



# Адаптация формулы притока, используемой в гидродинамических симуляторах относительно размера ячеек геологофильтрационной модели месторождения с трудноизвлекаемыми запасами

Докладчик:

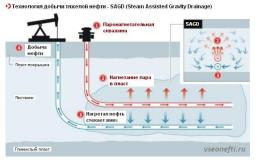
Дуркин С. М., доцент кафедры РЭНГМиПГ, к.т.н.



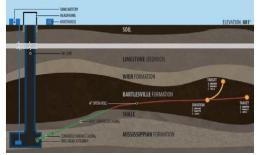
# Актуальность



В РФ основные запасы нефти вязкостью более 30 мПа·с расположены в Волго-Уральском, Западно-Сибирском и Тимано-Печорском регионах. В этих регионах сконцентрировано более 93 % вязкой нефти.




# Инновационная деятельность УГТУ




Технологии разработки

- поверхностные



- подземные



В УГТУ на протяжении многих лет функционирует инновационно-образовательный центр освоения ресурсов трудноизвлекаемых запасов. Материально-техническая база удовлетворяет всем современным требованиям. Основные работы научно-исследовательского характера выполняются для компании ООО «ЛУКОЙЛ-Коми».

3



# Ярегское месторождение

| 1 9   | 5 8                                                                                                |
|-------|----------------------------------------------------------------------------------------------------|
|       | HIII - 1 6sec                                                                                      |
|       | 7 4                                                                                                |
|       | 36 6                                                                                               |
|       | Контур балансовых запасов нефти                                                                    |
|       | Внешний контур нефтеносности                                                                       |
| ***** | Линия выклинивания пласта III 🗼 📉 //                                                               |
|       | Граница раздела Льаельской и Вежавожской площадей Участок термошахтной разработки на шахтных полях |
| 7.17k | Участок термошахтной разработки на шахтных полях                                                   |
|       | Участок разработки тепловым способом<br>с поверхности на Лыаельской площади                        |
| 200   | Запроектированный участок опытно-промышленных работ второй очереди на Лыаельской плошади           |
|       | Проектируемый участок добычи титановой руды                                                        |
|       | 11 1                                                                                               |

| Геолого-физическая | характеристика средней+верхней пачек (D3dzr+D2st) |
|--------------------|---------------------------------------------------|
| пласта III Ль      | <b>маельской площади Ярегского месторождения</b>  |

| Абсолютная отметка кровли, м                                  | -24 (от -62 до +16)                     |  |
|---------------------------------------------------------------|-----------------------------------------|--|
| Абсолютная отметка ВНК, м                                     | -60                                     |  |
| Тип залежи                                                    | пластовая сводовая                      |  |
| Тип коллектора                                                | терригенный,<br>трещиновато-<br>поровый |  |
| Площадь нефтеносности, $10^3  \text{м}^2$                     | 24370                                   |  |
| Средняя общая толщина, м                                      | 44                                      |  |
| Средневзвешенная нефтенасыщенная толщина, м                   | 10,9                                    |  |
| Средний коэффициент проницаемости, 10-3 мкм2                  | 2200                                    |  |
| Средний коэффициент пористости, доли ед.                      | 0,25                                    |  |
| Средний коэффициент начальной нефтенасыщенности, доли ед.     | 0,86                                    |  |
| Начальная пластовая температура, °С                           | 8                                       |  |
| Начальное пластовое давление, МПа                             | 1,1-1,4                                 |  |
| Давление насыщения нефти газом, МПа                           | 0,45                                    |  |
| Газовый фактор нефти, $м^3/т$                                 | 1,2                                     |  |
| Плотность нефти в пластовых условиях, $\kappa \Gamma/M^3$     | 933                                     |  |
| Плотность нефти в поверхностных условиях, $\kappa \Gamma/M^3$ | 945                                     |  |
| Вязкость нефти в пластовых условиях, мПа×с                    | 12000                                   |  |
| Объемный коэффициент нефти, ед.                               | 1,02                                    |  |
| Плотность воды в пластовых условиях, $\kappa \Gamma/M^3$      | 1002                                    |  |

# Опыт разработки



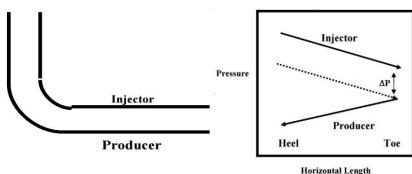






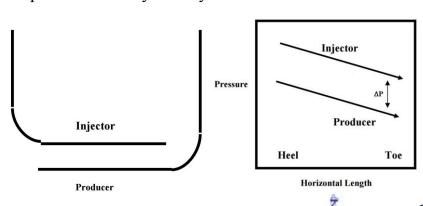


## **Технология SAGD**


Процесс SAGD впервые начал реализовываться на Ярегском месторождении (1968 г) в термошахтной модификации.

В современной модификации технология разработана Роджером Батлером, инженером канадской компании Imperial Oil в 1970-е годы; первый проект осуществлен на месторождении Cold Lake в 1980 г.

🄰 Технология добычи тяжелой нефти - SAGD (Steam Assisted Gravity Drainage)

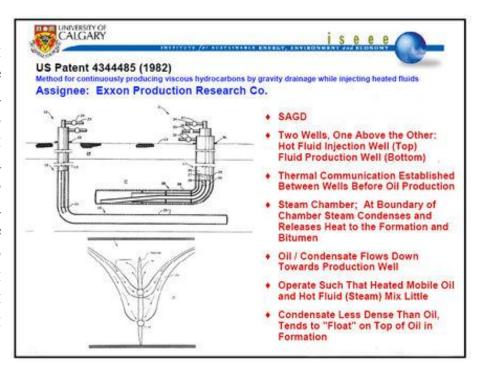



#### Классическая технология SAGD



#### Технология встречного SAGD

Позволяет выровнять закачку пара по горизонтальному стволу скважины.



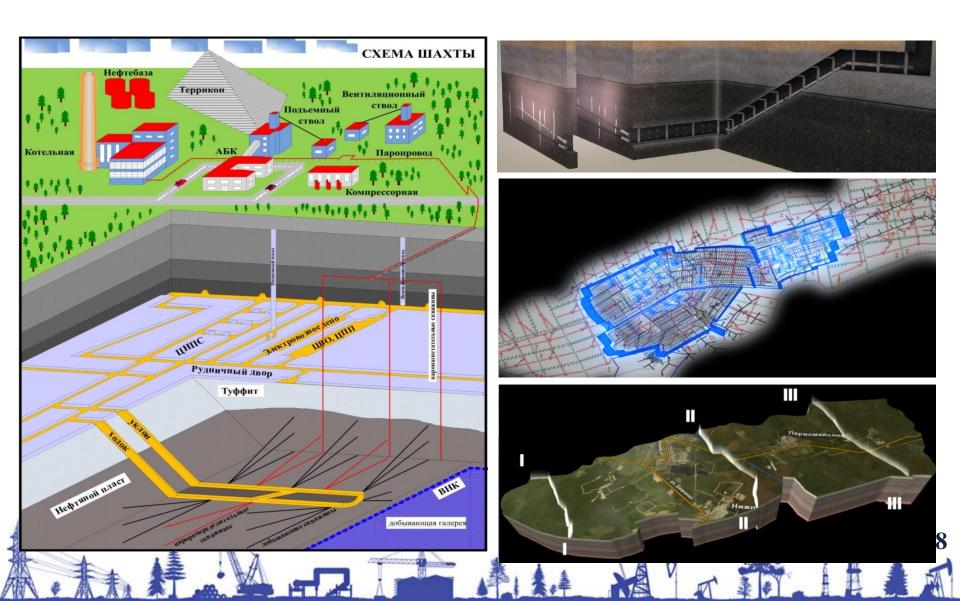



# Первые пилотные проекты SAGD

#### Канала

Первый пилотный проект SAGD был отработан канадскими разработчиками на крупнейшей в мире залежи природных битумов – на песчаниках Атабаска в Канаде. В течение первой стадии проекта в 1988 году было пробурено три пары скважин с длиной горизонтального участка 60 м. В этих скважинах была отработана классическая схема парогравитационного дренажа. КИН по элементу составил 50 %, а паронефтяное накопленное соотношение не превысило 2,5 т/т, что подтвердило экономическую рентабельность проекта. На следующей стадии проекта в 1993 году была начата коммерческая разработка залежи тремя парами скважин с длиной горизонтального участка 500 м.

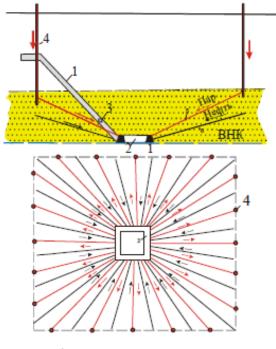



#### Венесуэла

В другой крупнейшей по запасам тяжелых углеводородов стране Венесуэле первый пилотный проект SAGD был запущен в декабре 1997 года. Результаты опытных работ показали, что разработка залежей высоковязкой нефти ( $10\ 000-45\ 000\ \text{м}$ Па·с) новым методом повышает КИН до 60 % по сравнению с 10 % при циклической паротепловой обработке скважин.

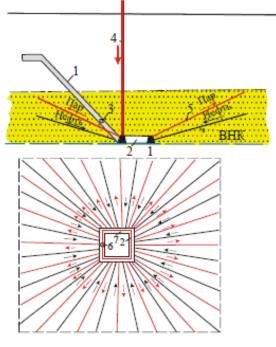


# A.


# Термошахтный метод



# Термошахтные технологии


# Подземно-поверхностная система

# Одногоризонтная система









- 1 уклон
- 2 буровая галерея
- 3 насосная
- 4 пароподающая скважина
- 5 паронагнетательная скажины
- 6 добывающая скважина



- 2 буровая галерея
- 3 насосная
- 4 паронагнетательные скважины
- 5 парораспределительные скажины
- 6 добывающие скважины



# Первые опытно-промышленные работы (НШ-2)

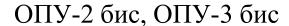



СХЕМА РАЗБУРИВАНИЯ Уклон Северный "ОПУ - 2 бис" (НШ-2) Площадь участка - 4,7 га

Фонд скважин для бурения - 45 (10872 п.м)

в том числе: нагнетательных - 16 (4146 п.м)

добывающих - 23 (5196 п.м)

контрольных - 6 (1530 п.м)

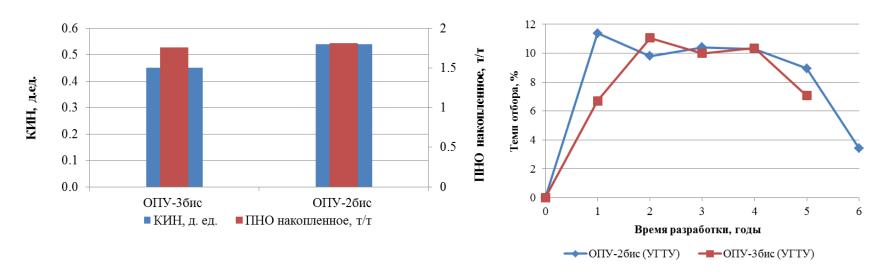
примечание: угол наклона контрольных скважин - 4°

СХЕМА РАЗБУРИВАНИЯ Уклон Северный "ОПУ - 3 бис" (НШ-2) Площадь участка - 4,3 га

Фонд скважин для бурения - 39 (8477 п.м)

в том числе: нагнетательных - 14 (3228 п.м)

добывающих - 20 (4120 п.м)


контрольных - 5 (1129 п.м)

примечание: угол наклона контрольных скважин - 4°





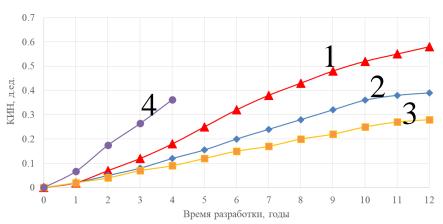
# Результаты экспериментальных работ

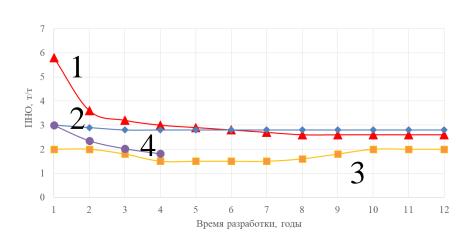


На 01.10.2017 г. коэффициент извлечения нефти за счет ввода тепла по участкам составил:

ОПУ-2бис -52,2%;

ОПУ-3бис -45,2%;


На 01.10.2017 г. накопленное паронефтяное отношение составило:


ОПУ-2бис -1,81 т/т;

ОПУ-3бис -1,76 т/т.



# Результаты сопоставления термошахтных систем (в динамике)



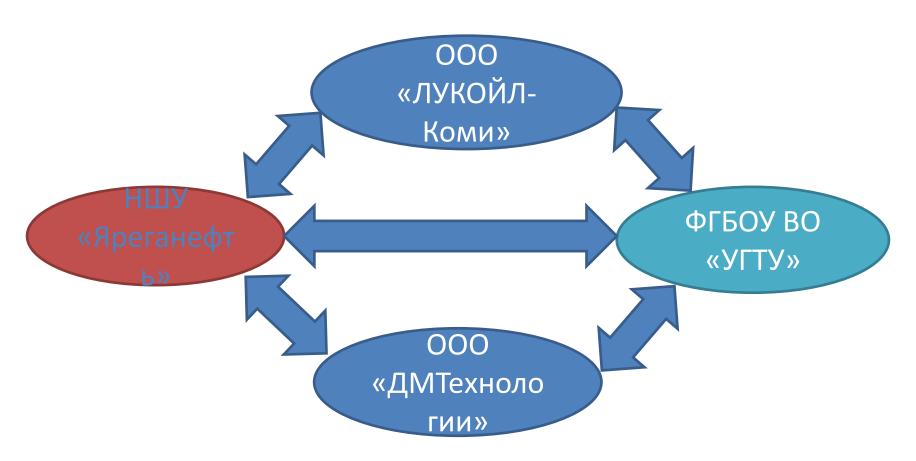


Динамика КИН, накопленного ПНО при реализации подземно-поверхностной (1), двухгоризонтной (2), одногоризонтной (3), модернизированной одногоризонтной (4) систем термошахтной разработки.

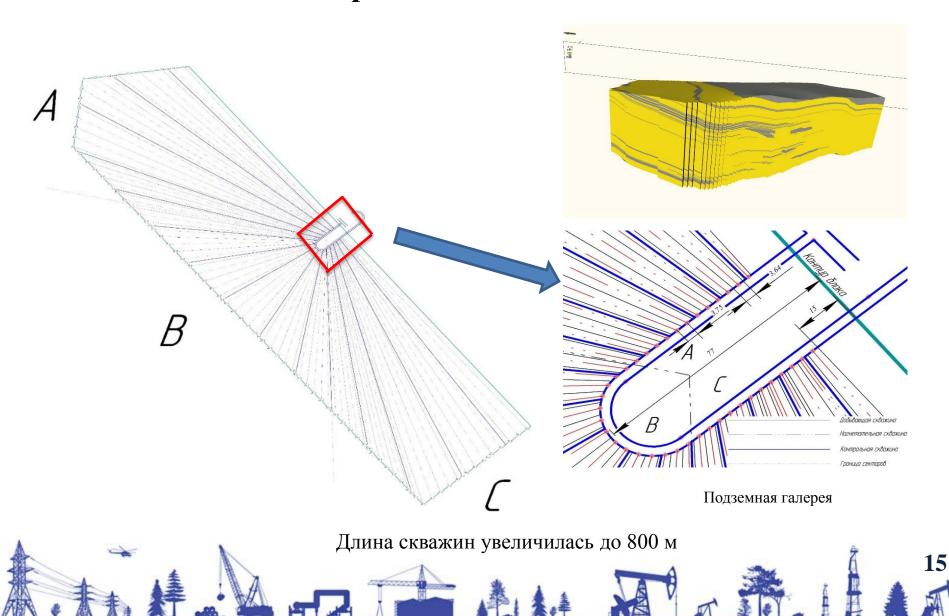
Внедрение модернизированной одногоризонтной системы позволяет повысить темпы нефтеотдачи.



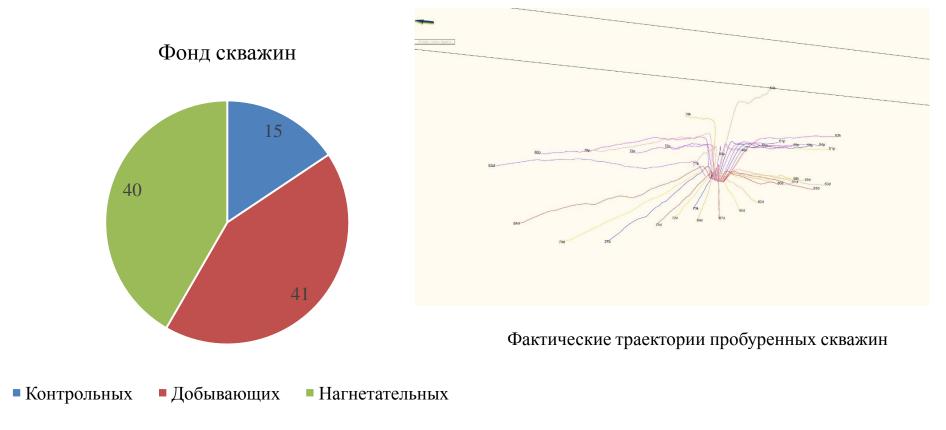
# Вторые опытно-промышленные работы (НШ-3)


Шахтный блок 2T-4 приурочен к нефтяной шахте № 3 и имеет следующе расположение (выделен красной рамкой)



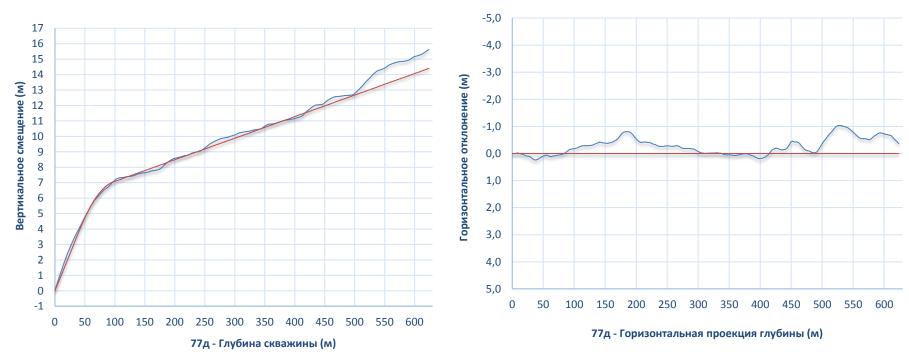

В уклонном блоке 2Т-4 впервые при одногоризонтной системе использоваться скважины длиной до 800 м. Увеличение длины скважин почти в 3 раза потребует увеличения параметров закачиваемого пара, что в потребует принятия очередь свою технических решений, и новых совершенствования всего прежде конструкций скважин. Учитывая, что многие решения будут испытываться в блоке 2Т-4 впервые, их эффективность будет оцениваться В процессе разработки блока. В связи с этим опытный следует подчеркнуть характер проводимых работ.




# Схема взаимодействия при реализации ОПР



# Схема расположения скважин




# Данные по скважинам блока 2Т-4



Бурение подземных скважин началось 14.06.2017 г. со скважины №55д. На данный момент пробурено 36 стволов скважин, из них 16 добывающих, 14 паронагнетательных и 6 контрольных, пробурено 14335 метров проектной глубины. Бурение ведется с помощью двух буровых станков РН-25 и ПРС.

# Контроль качества бурения подземных скважин



Сопоставление фактической и проектной траектории скважины №77д

- проектная траектория скважины
- фактическая траектория скважины





# Лаборатория моделирования



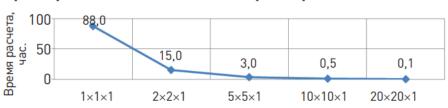
Численное моделирование позволяет предсказать показатели разработки и выбрать наиболее эффективный сценарий



# Анализ чувствительности размера ячейки

Авторы Дуркин С.М., Меньшикова И.Н., Терентьев А.А. «Моделирование показателей разработки залежей высоковязкой нефти»

http://ogjrussia.com/nomer-2017-iyuly


### Вертикальные скважины

| № варианта | Размеры ячеек<br>по осям X×Y, м |
|------------|---------------------------------|
| 1          | 1×1                             |
| 2          | 2×2                             |
| 3          | 4×4                             |
| 4          | 6×6                             |
| 5          | 8×8                             |
| 6          | 10×10                           |
| 7          | 15×15                           |
| 8          | 20×20                           |

## Горизонтальные скважины

| № варианта Размеры ячеек<br>по осям X×Y×Z, м |         | Количество ячеек<br>по осям X×Y×Z |
|----------------------------------------------|---------|-----------------------------------|
| 1                                            | 1×1×1   | 100×1000×27                       |
| 2                                            | 2×2×1   | 50×500×27                         |
| 3                                            | 5×5×1   | 20×200×27                         |
| 4                                            | 10×10×1 | 10×10×27                          |
| 5                                            | 20×20×1 | 5×50×27                           |

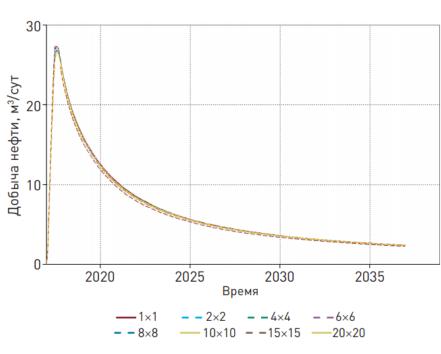
#### Время расчета в зависимости от размеров ячеек

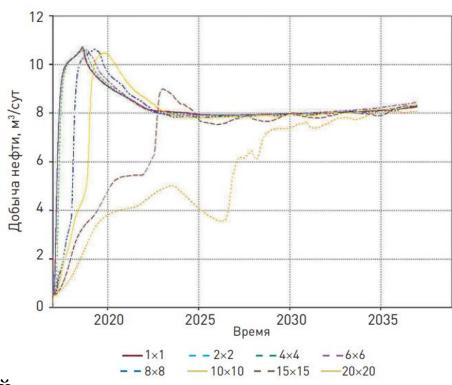




# Результаты расчета

| Технологические показатели          | Размеры ячеек, м   |        |        |         |         |
|-------------------------------------|--------------------|--------|--------|---------|---------|
| разработки месторождения            | 1×1×1<br>(базовый) | 2×2×1  | 5×5×1  | 10×10×1 | 20×20×1 |
| Накопленная добыча нефти, тыс. т    | 270,2              | 268,9  | 272,2  | 124,5   | 125,7   |
| Накопленная добыча жидкости, тыс. т | 1092,0             | 1091,6 | 1085,2 | 525,0   | 497,3   |
| Накопленная закачка пара, тыс. т    | 823,1              | 824,1  | 815,2  | 418,4   | 389,9   |
| ПНО, т/т                            | 3,05               | 3,06   | 2,99   | 3,36    | 3,10    |
| КИН, доли ед.                       | 48,30              | 48,08  | 48,65  | 22,25   | 22,47   |
| Ошибка мат. баланса                 | 1,1270             | 0,8760 | 0,7587 | 0,9523  | 0,4271  |


Накопленные технологические показатели.

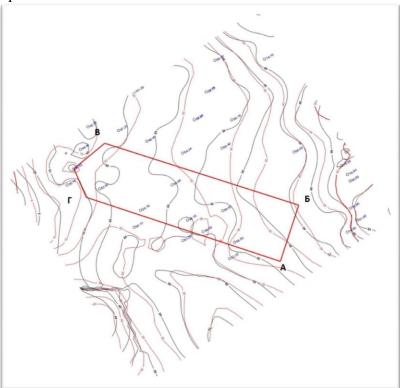



Ошибки расчета накопленных показателей разработки в зависимости от размера ячеек.



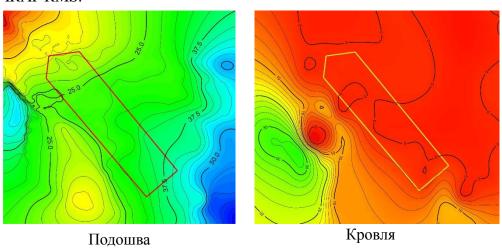
# Результаты расчета

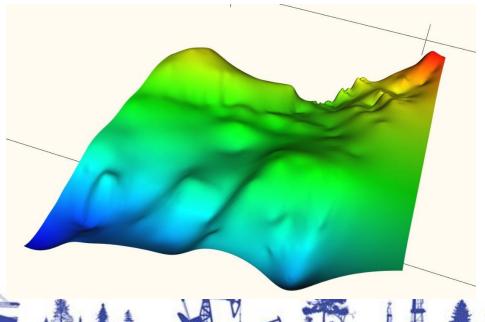




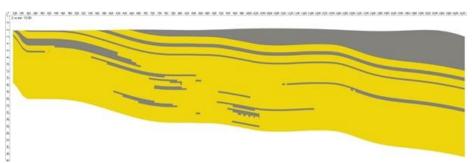

Текущая добыча нефти при изотермической фильтрации

Текущая добыча нефти при неизотермической фильтрации

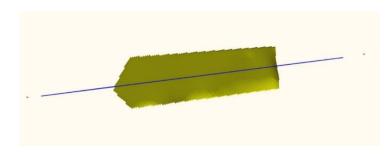

# Исходная информация


Для уточнения модели, были оцифрованы карты подошвы и кровли участка Ярегского месторождения в районе блока 2T-4 НШ-3.

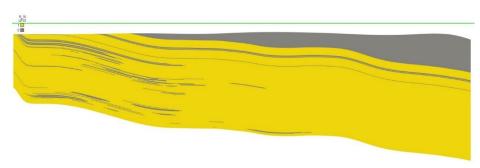



По полученным структурным картам с помощью программы IRAP RMS построены поверхности подошвы и кровли участка Ярегского месторождения.

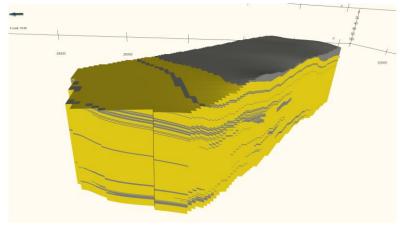
По полученным оцифрованным картам построены структурные карты участка Ярегского месторождения в программе IRAP RMS.







# 3D модель



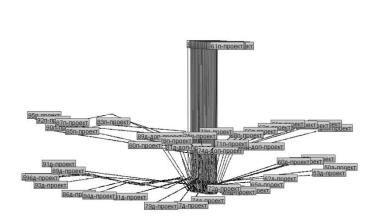

Модель построенная по скважинам 1940-х и 1950-х годов

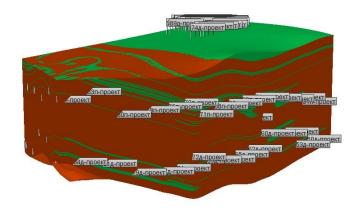


Разрез блока 2Т-4 (вид сверху)



Модель построенная по скважинам 1940-х и 1950-х годов и по гамма-каротажу 42-х пробуренных проектных скважин





3D модель построенная по скважинам 1940-х и 1950-х годов и по гамма-каротажу 42-х пробуренных проектных скважин



# Актуализированная гидродинамическая модель

После создания актуализированной геологической модели, были построены гидродинамические модели сектора А блока 2Т-4 с размерами ячеек 5х5х0.1 и 10х10х0.2 для симулятора СМG. Сектор А был выбран, так как в нём пробурены практически все скважины и готовы все ГТН на бурение скважин, по которым строились траектории скважин для гидродинамической модели.

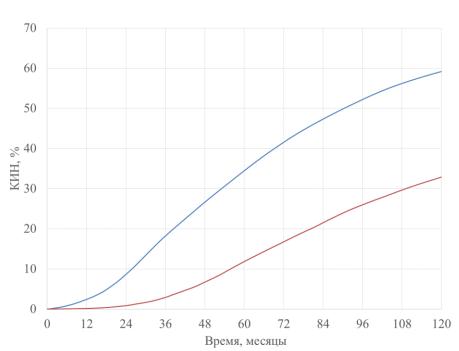


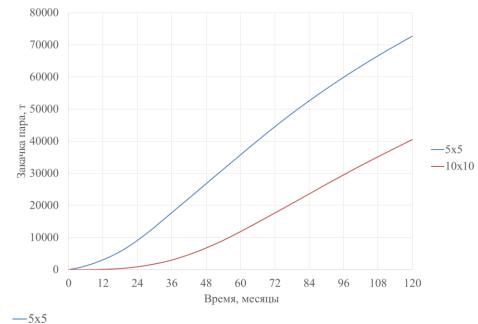




По каждой скважине прописаны технологические режимы, заданы термогидродинамические и емкостные свойства модели, которые были установлены в мини-проекте по разработке блока 2Т-4. Так же были соблюдены траектории и интервалы перфораций по каждой скважине согласно ГТН на бурение.

|                   |                                 |                                  | Общее               | Размер ячейки     |                        |
|-------------------|---------------------------------|----------------------------------|---------------------|-------------------|------------------------|
| Модель блока 2Т-4 | Количество ячеек по горизонтали | Количество слоев по<br>вертикали | количество<br>ячеек | по горизонтали, м | по<br>вертикали<br>, м |
| 5x5x0.1           | 70x120                          | 315                              | 2 646 000           | 5x5               | 0,1                    |


# Результаты моделирования


По полученным гидродинамическим моделям с параметрами 5x5 м и 10×10 м был произведен расчет в программном комплексе CMG модуле STARS. Расчетное время было принято 10 лет.

-10x10

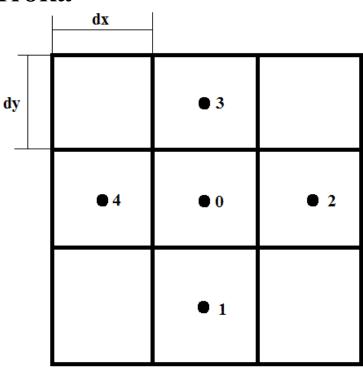
## Ошибка материального баланса

5x5 - 1,734 % 10x10 - 0.580 %





Приведенные результаты необходимости свидетельствуют 0 адаптации формулы притока


# Формула притока

$$q = \frac{2\pi kh}{\mu} \left[ \frac{p_0 - p_w}{\ln\left(\frac{r_0}{r_w}\right)} \right]$$

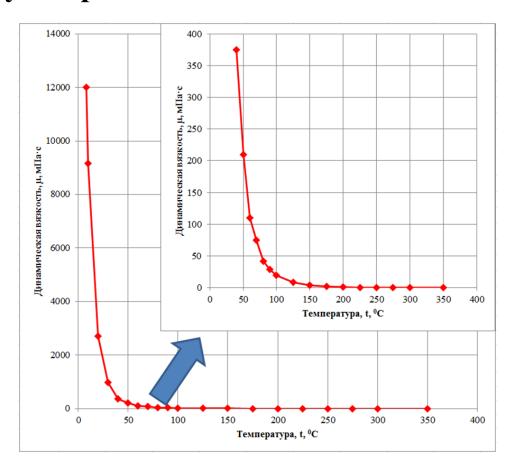
$$p_i = p_o + \frac{q\mu}{2\pi kh} \ln\left(\frac{\Delta x}{r_o}\right)$$

$$\frac{kh}{\mu} (p_1 + p_2 + p_3 + p_4 - 4p_o) = q$$

$$\frac{r_o}{\Delta x} = \exp\left(-\frac{\pi}{2}\right) = 0.208$$



# Analytical Well Models for Reservoir Simulation

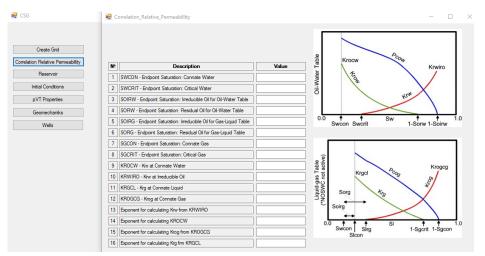

Jamal H. Abou-Kassem, SPE, U. of Petroleum and Minerals Khalid Aziz, SPE, Stanford U.

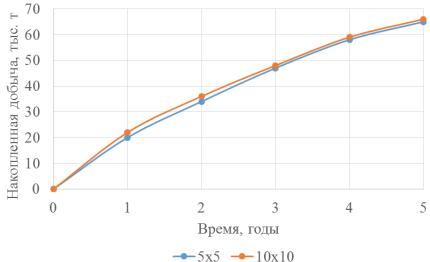


# Формула притока

$$q = \frac{2\pi kh}{\mu(T)} \left| \frac{p_0 - p_w}{\ln\left(\frac{r_0}{r_w}\right)} \right|$$

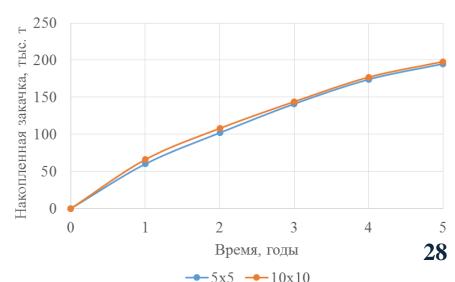
На основе балансовых соотношений сохранения массы и энергии разработана двухфазная математическая модель «нефть-горячая вода»





Зависимость вязкости от температуры



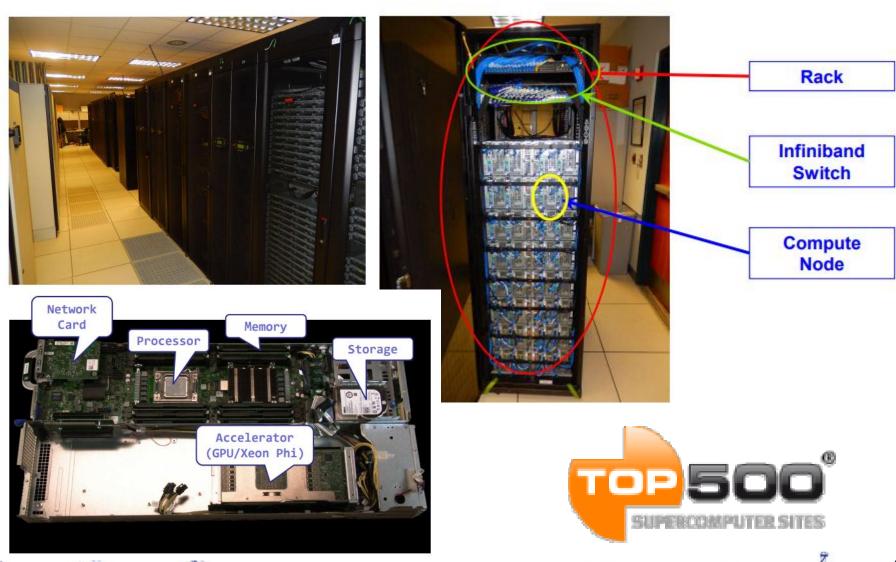
# Предлагаемое решение


# Собственный симулятор





# Библиотека Intel MKL (солвер)






# The w

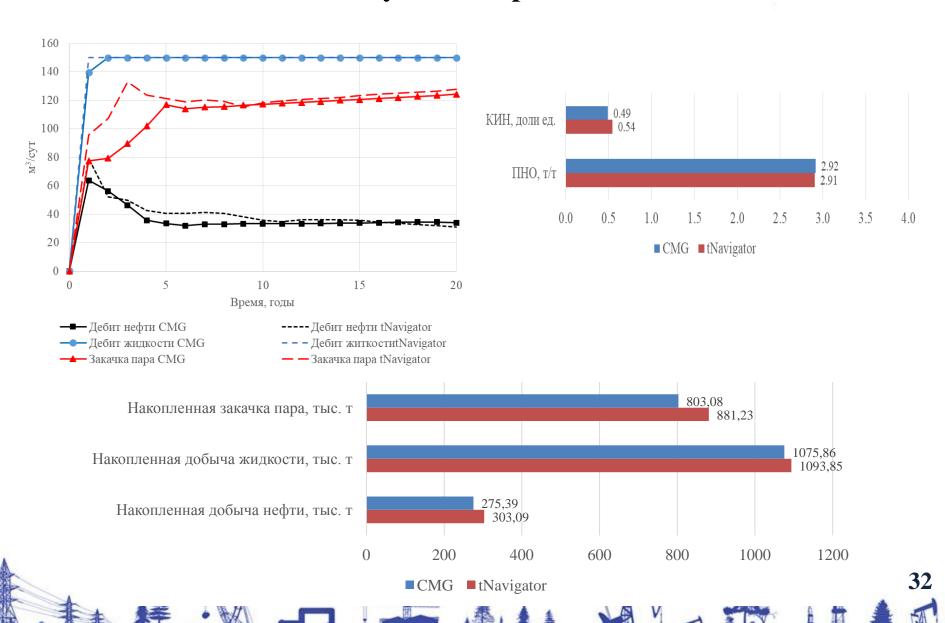
# Суперкомпьютер (hpc)

The Ask of



# Технические характеристики суперкомпьютера

- 2 Интерактивных узла
  - Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors
  - o 64GB 1666MHz Ram
  - o 500GB HD
  - o 40 Gigabit/sec Infiniband network interface
  - o 1 Gigabit Ethernet network interface
  - o Red Hat Enterprise Linux 6
- 382 Вычислительных узла
  - ✓ Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors
  - ✓ 32GB 1666MHz Ram
  - ✓ 500GB HD
  - ✓ 40 Gigabit/sec Infiniband network interface
  - ✓ 1 Gigabit Ethernet network interface
  - ✓ Red Hat Enterprise Linux 6


- 50 Вычислительных узлов
- ✓ Two 2.6 GHz 8-Core Sandy Bridge Xeon 64bit Processors
- Two NVIDIA M2090 GPUs
- ✓ 64GB 1666MHz Ram
- ✓ 500GB HD
- ✓ 40 Gigabit/sec Infiniband network interface
- ✓ 1 Gigabit Ethernet network interface
- ✓ Red Hat Enterprise Linux 6
- 8 Вычислительных узлов
  - ✓ Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors
  - ✓ 256GB 1666MHz Ram
  - ✓ 500GB HD
  - ✓ 40 Gigabit/sec Infiniband network interface
  - ✓ 1 Gigabit Ethernet network interface
  - ✓ Red Hat Enterprise Linux 6
- Хранилище данных
  - ✓ 400 TB DDN Lustre High-Performance disk 30
  - ✓ 2 TB NFS-mounted/home disk storage



# Результаты расчета

| Модель SAGD (2,7 млн. активных ячеек, время моделирования – 10 лет) |                                         |  |
|---------------------------------------------------------------------|-----------------------------------------|--|
| CMG (расчет на суперкомпьютере в                                    | tNavigator (расчет на суперкомпьютере в |  |
| Луизиане) на 1 узле (16 ядер)                                       | Хьюстоне) на 1 узле (20 ядер)           |  |
| Время расчета, час                                                  |                                         |  |
| 46                                                                  | 163                                     |  |
| CMG Parallel Solver на нескольких                                   | tNavigator (расчет на суперкомпьютере в |  |
| узлах считать не может (но сегодня                                  | Хьюстоне) на 2 узлах (20 ядер)          |  |
| имеются технологии, которые могут                                   |                                         |  |
| содержать в одном узле до 100 ядер)                                 |                                         |  |
| -                                                                   | 98                                      |  |

# Результаты расчета







# Спасибо за внимание!

