ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное уреждение высшего образования САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ

СОГЛАСОВАНО	УТВЕРЖДАЮ
Руководитель ОПОП ВО	
профессор В.А. Шпенст	деятельности
	Д.Г. Петраков

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ МАТЕМАТИЧЕСКИЕ МОДЕЛИ И РАСЧЕТ СИСТЕМ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИХ КОМПЛЕКСОВ

Уровень высшего образования: Специалитет

Специальность: 21.05.04 Горное дело

Направленность (профиль):

производства

Квалификация выпускника: горный инженер (специалист)

Форма обучения: очная

Составители: Доц. Коржев А.А

Рабочая программа дисциплины «Математические модели и расчет систем
управления технологических комплексов» разработана:
- в соответствии с требованиями ФГОС ВО – специалитет по специальности
«21.05.04 Горное дело», утвержденного приказом Минобрнауки России № 987 от
12.08.2020 г.;
- на основании учебного плана специалитета по специальности «21.05.04 Горное
дело» направленность (профиль) «Электрификация и автоматизация горного
производства».
Составители:
к.т.н., доц. А.А. Коржев
Рабочая программа рассмотрена и одобрена на заседании кафедры
Рабочая программа рассмотрена и одобрена на заседании кафедры
Рабочая программа рассмотрена и одобрена на заседании кафедры электроэнергетики и электромеханики от 22.01.2021 г., протокол № 12/01.
электроэнергетики и электромеханики от 22.01.2021 г., протокол № 12/01.
электроэнергетики и электромеханики от 22.01.2021 г., протокол № 12/01.
электроэнергетики и электромеханики от 22.01.2021 г., протокол № 12/01.
электроэнергетики и электромеханики от 22.01.2021 г., протокол № 12/01. Ваведующий кафедрой д.т.н., проф. В.А. Шпенст
электроэнергетики и электромеханики от 22.01.2021 г., протокол № 12/01. Ваведующий кафедрой д.т.н., проф. В.А. Шпенст Рабочая программа согласована:

А.Ю. Романчиков

Начальник отдела методического обеспечения учебного процесса

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель изучения дисциплины «Математические модели и расчет систем управления технологических комплексов» — формирование у студентов базовых знаний в области теории и практики создания математических моделей и расчета систем управления технологических комплексов промышленного производства.

Основными задачами дисциплины являются:

- изучение теоретических основ математического моделирования, методов построения математических моделей, методов оценки адекватности и границ применимости математических моделей, методов расчета систем автоматического управления технологических комплексов;
- овладение методами математического описания технологических комплексов промышленного производства;
- формирование представлений о современных технологиях математического моделирования и управления технологическими комплексами, в том числе с использованием интеллектуальных подходов; навыков проведения имитационного моделирования с применением специализированных пакетов прикладных программ; навыков применения математических моделей для решения практических задач по разработке систем управления технологических комплексов промышленного производства; мотивации к самостоятельному повышению уровня профессиональных навыков в области математического моделирования и разработки систем управления технологических комплексов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Математические модели и расчет систем управления технологических комплексов» относится к дисциплинам по выбору Блока 1 «Дисциплины (модули)» основной профессиональной образовательной программы по специальности 21.05.04 Горное дело» направленность (профиль) «Электрификация и автоматизация» и изучается в девятом семестре.

Предшествующими основополагающими дисциплинами для дисциплины «Математические модели и расчет систем управления технологических комплексов» являются дисциплины: «Высшая математика», «Электротехника», «Теория автоматического управления», «Теория функций комплексного переменного и операционное исчисление», «Теория вероятностей и математическая статистика».

Дисциплина «Математические модели и расчет систем управления технологических комплексов» является основополагающей для дисциплин: «Проектирование систем автоматики», «Эксплуатация систем автоматики».

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МО-ДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Формируемые компо по ФГОС ВО		Основные показатели
Содержание компетенции	Код компе- тенции	освоения программы дисциплины
Способен выполнять математическое моделирование в рамках выполнения проекта автоматизированных электротехнических комплексов и систем	ПСК-7	ПКС-7.1. Знать: порядок расчета параметров автоматизированных элетротехнических систем и систем ПКС-7.2. Уметь: разрабатывать математические и имитационные модели автоматизированных элетротехнических систем и систем ПКС-7.3. Владеть: навыками математического моделирования автоматизированных элетротехнических систем

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины «Математические модели и расчет систем управления технологических комплексов» составляет 3 зачетных единиц 108 ак. часов

Вид учебной работы	Всего	Семестр
	часов	9
Аудиторные занятия (всего), в том числе:	108	108
Лекции	34	34
Практические занятия (ПЗ)	34	34
Лабораторные работы (ЛР)	-	-
Самостоятельная работа (всего), в том числе:	40	40
Курсовой проект (работа)	1	-
Расчетно-графические работы	-	-
Подготовка к практическим занятиям	34	34
Реферат	-	-
Подготовка к зачету	6	6
Вид промежуточной аттестации (зачет- 3, диф. зачет – Д3, экзамен - Э)	ДЗ	дз
Общая трудоемкость (час)	108	108
Общая трудоемкость (зач. ед.)	3	3

4.2. Содержание дисциплины

Учебным планом предусмотрены: лекции, практические занятия и самостоятельная работа.

4.2.1. Разделы дисциплины и виды занятий

			Виды занятий			
№ п/п	Наименование разделов	Всего ак. часов	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа студента
1.	Раздел 1 «Математическое моделирование. Основные понятия и определения»	19	6	6	-	7
2.	Раздел 2 «Идентификация моделей»	19	6	6	-	7
3.	Раздел 3 «Модели теории графов и конечные автоматы»	19	6	6	-	7
4.	Раздел 4 «Модели теории надежности»	19	6	6	-	7
5.	Раздел 5 «Математическое моделирование объектов нефтегазового производства»	16	5	5	-	6
6.	Раздел 6 «Современные подходы к моделированию и управлению техническими объектами»	16	5	5	-	6
	Итого:	108	34	34	-	40

4.2.2. Содержание разделов дисциплины

№ п/п	Наименование раздела дисци- плины	Содержание лекционных занятий	Трудоемкость в ак. часах
1.	Раздел 1	Основные определения. Классификация методов моделирования. Классификация моделей. Этапы моделирования. Выбор класса модели. Выбор языка описания модели. Оценка адекватности модели.	6
2.	Раздел 2	Основы теории инженерного эксперимента. Активный и пассивный эксперимент. Применение ступенчатых и импульсных передаточных функций для идентификации передаточных функций и оценок качества переходного процесса. Основы статистической динамики и спектрального анализа. Модели статических режимов. Статистическая обработка результатов экспериментов. Линейная и нелинейная регрессии. Метод наименьших квадратов.	6

	Раздел 3	Определения. Описания графов с помощью	
		матриц. Матрицы смежности и инцидентно-	
3.		сти. Потоковые графы. Определения и основ-	6
		ные понятия теории конечных автоматов. Ав-	U
		томаты Мили и Мура. Способы задания авто-	
		матов.	
	Раздел 4	Случайные события. Типовые распределения.	
		Критерии надежности. Расчет структурной	
		надежности системы. Модели резервирования.	
4.		Типовая методика расчета надежности	6
		устройств автоматики. Идентификация пока-	
		зателей надежности по данным, полученным в	
		результате эксплуатации.	
	Раздел 5 Примеры математического моделирования и		
5.	расчета систем управления технологических		~
J.		объектов предприятий минерально-сырьевого	5
		комплекса.	
	Раздел 6	Системы искусственного интеллекта. Нейрон-	
		ные сети и их применение при моделировании	
6		и построении систем управления технически-	~
		ми объектами. Нечеткие системы управления.	5
		Генетические алгоритмы. Имитационное мо-	
		делирование.	
		Итого:	34

4.2.3. Практические занятия

№ п/п	Раздел	Тематика практических занятий	Трудоем- кость в ак. часах
1.	Раздел 1	Методы построения математических моделей	6
2.	Раздел 2	Использование интерполяции, метода средних и метода наименьших квадратов для идентификации статической характеристики объекта	6
3.	Раздел 3	Построение ориентированного графа системы автоматического управления. Использование формулы Мэйсона для получения передаточной функции системы	6
4.	Раздел 4	Расчет вероятности безотказной работы по структурной схеме надежности	6
5	Раздел 5	Построение графа управляющего автомата объекта нефтегазового производства	5
6	Раздел 6	Построение генетического алгоритма решения уравнения	5
	•	Итого:	34

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе обучения применяются:

Лекции, которые являются одним из важнейших видов учебных занятий и составляют основу теоретической подготовки обучающихся. Цели лекционных занятий:

-дать систематизированные научные знания по дисциплине, акцентировать внимание на наиболее сложных вопросах дисциплины;

-стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Практические занятия. Цели практических занятий:

-совершенствовать умения и навыки решения практических задач.

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности.

Лабораторные работы. Цели лабораторных занятий:

-углубить и закрепить знания, полученные на лекциях и в процессе самостоятельной работы обучающихся с учебной и научной литературой;

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности.

Консультации (текущая консультация, накануне промежуточной аттестации) является одной из форм руководства учебной работой обучающихся и оказания им помощи в самостоятельном изучении материала дисциплины, в ликвидации имеющихся пробелов в знаниях, задолженностей по текущим занятиям, в подготовке письменных работ (проектов).

Текущие консультации проводятся преподавателем, ведущим занятия в учебной группе, научным руководителем и носят как индивидуальный, так и групповой характер.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других занятиях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточному контролю.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМО-СТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИ-ПЛИНЫ

6.1. Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Раздел 1. Математическое моделирование. Основные понятия и определения.

- 1. Дайте определения понятиям «модель» и «моделирование».
- 2. Какие вы знаете способы построения математических моделей?
- 3. По каким признакам принято классифицировать математические модели?
- 4. Какие методы упрощения моделей вы знаете?
- 5. Приведите примеры использования одного из методов.
- 6. Какие требования предъявляются к математическим моделям?
- 7. Поясните различие между понятиями «точность» и «адекватность» модели.
- 8. На какие этапы делится процесс математического моделирования?
- 9. Какие операции осуществляются на первом этапе математического моделирования?
- 10. На каком этапе математического моделирования выполняется оценка работоспособности модели и ее адекватности объекту?

Раздел 2. Идентификация моделей.

- 1. Дайте определение понятию «идентификация».
- 2. Поясните, каким образом осуществляется активная идентификация объекта.
- 3. Рассмотрите интерполирование с помощью формулы Лагранжа на конкретном примере.

- 4. На конкретном примере рассмотрите идентификацию статической характеристики объекта с использованием метода наименьших квадратов.
- 5. Поясните, каким образом осуществляется идентификация объекта по экспериментальной переходной характеристике.
- 6. Поясните, каким образом осуществляется идентификация объекта по частотным характеристикам.
 - 7. Перечислите основные характеристики случайного сигнала.
- 8. Поясните, каким образом осуществляется пассивная идентификация объекта с использованием корреляционных функций и спектральных плотностей сигналов.

Раздел 3. Модели теории графов и конечные автоматы.

- 1. Каким образом определяется математическая модель абстрактного автомата?
- 2. Какой автомат принято называть конечным?
- 3. В чем отличие между автоматами Мили и Мура?
- 4. Какие существуют способы представления конечных автоматов?
- 5. Какие существуют способы задания графа?

Раздел 4. Модели теории надежности.

- 1. Что понимается под надежностью аппаратуры автоматики?
- 2. Какие вы знаете законы распределения отказов?
- 3. Как рассчитать вероятность безотказной работы аппаратуры при экспоненциальном законе распределения отказов?
- 4. Как осуществляется определение количественных показателей надежности по экспериментальным данным?
- 5. Как осуществляется определение количественных показателей надежности аппаратуры на стадии проектирования?
- 6. Каким образом составляется структурная схема надежности аппаратуры? Какие способы соединения элементов на структурной схеме надежности вы знаете?

Раздел 5. Математическое моделирование объектов горного и нефтегазового производства.

- 1. Для чего проводится имитационное моделирование разработанного управляющего устройства техническим объектом?
- 2. Какие прикладные программы используются для имитационного моделирования управляющего устройства техническим объектом, построенного на базе теории конечных автоматов?
- 3. Каким образом может быть осуществлена техническая реализация управляющего автомата?
- 4. Какие методы настройки регуляторов используются при автоматизации объектов горного производства?
- 5. В чём преимущества и недостатки систем с последовательной и параллельной коррекцией?

Раздел 6. Современные подходы к моделированию и управлению техническими объектами.

- 1. Что называется функцией принадлежности?
- 2. Дайте определение нечеткому множеству.
- 3. Запишите операторы для фаззи-логической конъюнкции и фаззи-логической дизьюнкции.
 - 4. Что такое логическая импликация?
 - 5. Что представляют собой генетические алгоритмы, какова область их применения?

6.2. Оценочные средства для проведения промежуточной аттестации (дифференциальному зачёту)

6.2.1. Примерный перечень вопросов/заданий к дифференциальному зачёту:

- 1. Дайте определения понятиям «модель» и «моделирование».
- 2. Какие вы знаете способы построения математических моделей?
- 3. По каким признакам принято классифицировать математические модели?
- 4. Какие методы упрощения моделей вы знаете? Приведите примеры использования одного из методов.
 - 5. Какие требования предъявляются к математическим моделям?
 - 6. Поясните различие между понятиями «точность» и «адекватность» модели.
 - 7. На какие этапы делится процесс математического моделирования?
- 8. Какие операции осуществляются на первом этапе математического моделирования?
- 9. На каком этапе математического моделирования выполняется оценка работоспособности модели и ее адекватности объекту?
 - 10. Дайте определение понятию «идентификация».
 - 11. Поясните, каким образом осуществляется активная идентификация объекта.
- 12. Рассмотрите интерполирование с помощью формулы Лагранжа на конкретном примере.
- 13. На конкретном примере рассмотрите идентификацию статической характеристики объекта с использованием метода наименьших квадратов.
- 14. Поясните, каким образом осуществляется идентификация объекта по экспериментальной переходной характеристике.
- 15. Поясните, каким образом осуществляется идентификация объекта по частотным характеристикам.
 - 16. Перечислите основные характеристики случайного сигнала.
- 17. Поясните, каким образом осуществляется пассивная идентификация объекта с использованием корреляционных функций и спектральных плотностей сигналов.
 - 18. Какова основная область применения методов теории графов?
 - 19. Что подразумевается под понятием «граф»?
 - 20. Что называется путем графа?
 - 21. Для примера структурной схемы системы постройте ориентированный граф системы.
 - 22. Поясните формулу Мейсона и ее компоненты.
- 23. Используйте формулу Мейсона для определения передаточной функции системы произвольной структуры.
- 24. Для чего проводится имитационное моделирование разработанного управляющего устройства техническим объектом?
- 25. Какие прикладные программы используются для имитационного моделирования управляющего устройства техническим объектом, построенного на базе теории конечных автоматов?
- 26. Каким образом может быть осуществлена техническая реализация управляющего автомата?
- 27. Осуществите моделирование управляющего устройства технического объекта горного или нефтегазового производства.
 - 28. Что понимается под надежностью аппаратуры автоматики?
 - 29. Какие вы знаете законы распределения отказов?
- 30. Как рассчитать вероятность безотказной работы аппаратуры при экспоненциальном законе распределения отказов?
- 31. Как осуществляется определение количественных показателей надежности по экспериментальным данным?
- 32. Как осуществляется определение количественных показателей надежности аппаратуры на стадии проектирования?
 - 33. Каким образом составляется структурная схема надежности аппаратуры?
- 34. Какие способы соединения элементов на структурной схеме надежности вы знаете?
 - 35. Что называется функцией принадлежности?
 - 36. Дайте определение нечеткому множеству.
- 37. Запишите операторы для фаззи-логической конъюнкции и фаззи-логической дизьюнкции.
 - 38. Что такое логическая импликация?

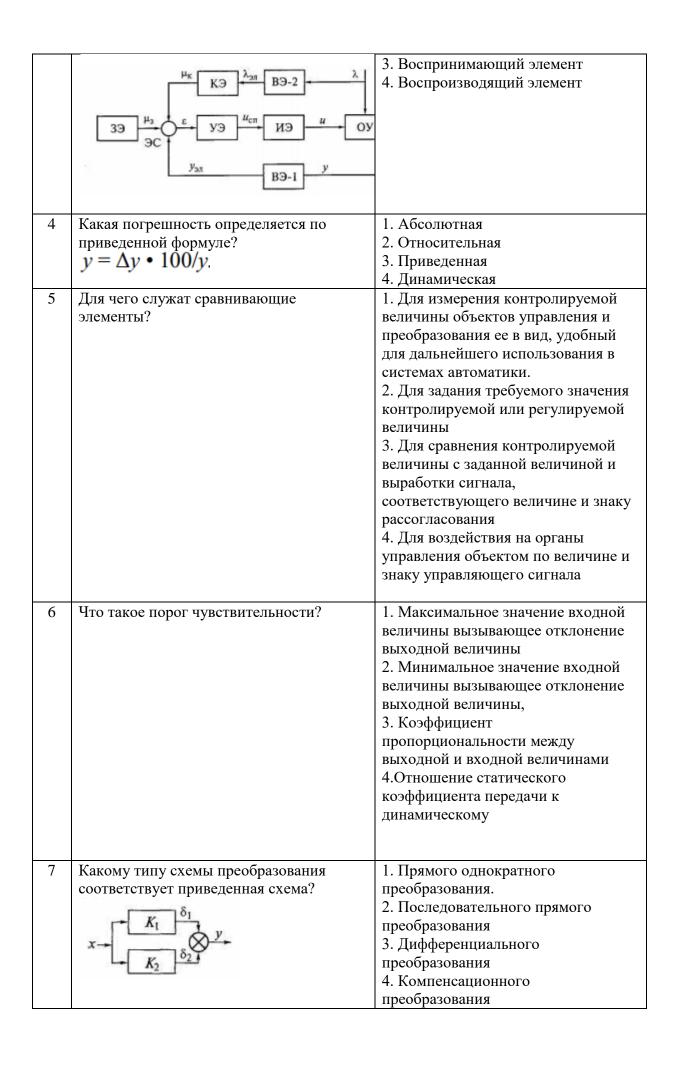
- 39. Поясните одну из схем нейросетевого управления объектом. 40. Что представляют собой генетические алгоритмы, какова область их применения?

6.2.2. Примерные тестовые задания

Вариант 1

	Зариант 1			
No	Bonpoc	Варианты ответа		
n/n	•	-		
1	Что такое автоматика?	1. Отрасль науки и техники, охватывающая теорию и принципы построения систем управления техническими объектами и процессами, действующих без непосредственного участия человека 2. Отрасль науки и техники, охватывающая теорию и принципы построения систем управления техническими объектами и процессами, действующих с непосредственным участием человека 3. Отрасль науки и техники, охватывающая теорию и принципы построения систем управления техническими объектами и процессами, действующих с опосредованым участием человека 4. Отрасль науки и техники, охватывающая теорию и принципы построения систем управления техническими объектами и процессами, действующих с опосредованым участием человека 4. Отрасль науки и техники, охватывающая теорию и принципы построения систем управления техническими объектами и процессами, действующих с частичным участия человека		
2	Что обозначено буквой х на рисунке?	 Неизвестная величина. Управляющее воздействие Возмущающее воздействие Регулируемая величина 		
3	Что обозначено буквами ЗЭ на схеме?	 Задающий элемент Запрещающий элемент Элемент задержки Запоминающий элемент 		

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	у _{эл} ВЭ-1 у	
4	Для чего служат задающие элементы?	1. Для измерения контролируемой величины объектов управления и преобразования ее в вид, удобный для дальнейшего использования в системах автоматики. 2. Для задания требуемого значения контролируемой или регулируемой величины 3. Для сравнения контролируемой величины с заданной величиной и выработки сигнала, соответствующего величине и знаку рассогласования
		4. Для воздействия на органы управления объектом по величине и знаку управляющего сигнала
5	Что такое чувствительность?	1. Коэффициент преобразования датчика 2. Передаточная функция датчики 3. Коэффициент полезного действия датчики 4. Отношение сигнал/шум
6	Какая погрешность определяется по приведенной формуле? $\Delta y = y' - y.$	1. Абсолютная 2. Относительная 3. Приведенная 4. Динамическая
7	Что такое метрологическая совместимость?	1. Обеспечение согласованности конструктивных параметров и механических сопряжений технических средств, а также выполнение эргономических норм и эстетических требований при совместном использовании 2. Обеспечение работоспособности и надежности функционирования технических средств при совместном использовании в производственных условиях, а также удобство обслуживания, настройки и ремонта 3. Совокупность выбранных метрологических характеристик и свойств средств измерений, обеспечивающих сопоставимость


8	Какому типу схемы преобразования соответствует приведенная схема? $ \begin{array}{c} x \\ \hline x \\ \hline & \kappa_1 \\ \hline & \delta_1 \end{array} $	результатов измерений и возможность расчета погрешности результатов измерений при работе технических средств в составе систем 4. Ни одно из перечисленных выше определений 1. Прямого однократного преобразования. 2. Последовательного прямого преобразования 3. Дифференциального преобразования 4. Компенсационного преобразования
9	Какому типу схемы преобразования соответствует приведенной уравнение статической характеристики? $y = \frac{K_1}{1 + K_1 K_2} x$	 Прямого однократного преобразования. Последовательного прямого преобразования Дифференциального преобразования Компенсационного преобразования
10	На каком принципе работает САУ?	1. На принципе отрицательной обратной связи, заключающемся в обеспечении равенства задающего воздействия и управляемой величины 2. В обеспечении неравенства задающего воздействия и управляемой величины 3. В обеспечении компенсации возмущающего воздействия 4. В обеспечении равенства, задающего и возмущающего воздействий
11	Имеется дифференциальное уравнение системы при нулевых начальных условиях и ее передаточная функция. Что из них дает большую информацию о системе?	1. Дифференциальное уравнение 2. Передаточная функция 3. И дифференциальное уравнение и передаточная функция дают одинаковую информацию 4. Все приведённые ответы неправильные
12	По какой характеристике определяются прямые показатели качества САУ?	1. По весовой характеристике системы 2. По кривой переходного процесса в системе 3. По АФХ разомкнутой системы

		4. По ЛАЧХ разомкнутой АСР
13	Что дает введение интеграла в закон регулирования?	1. Увеличивается запас устойчивости 2. Повышается быстродействие 3. Повышается статическая точность системы 4. Уменьшается перерегулирование
14	По каким данным рассчитывается устойчивость замкнутой АСР по критерию Гурвица?	1. Характеристическое уравнение разомкнутой САУ 2. Характеристическое уравнение замкнутой САУ 3. АФХ разомкнутой САУ 4. АФХ замкнутой САУ
15	Какой прямой показатель качества переходного процесса наиболее эффективно улучшает введение производной в закон регулирования?	1. Увеличивается статическую погрешность 2. Повышается быстродействие 3. Увеличивается затухание 4. Понижается колебательность
16	Какое элементарное динамическое звено САУ имеет дифференциальное уравнение вида $ T \frac{dy(t)}{dt} + y(t) = kx(t) , ? $	1. Колебательное 2. Безынерционное 3. Апериодическое 4. Дифференцирующее
17	График развития во времени какого процесса представлен на рисунке?	 Дискретного во времени. Непрерывного во времени. Процесса в виде дискретных событий. Непрерывного.
18	Структурная схема какой системы приведена на рисунке? $X_3 + X_3 - \Delta X_3$ $X_3 + X_3 - \Delta X_3$ $X_3 + X_3 - \Delta X_3$ YY YY YY YY YY YY YY Y	1. Системы компенсации, реализующей управление по возмущению (принцип Понселе). 2. Системы регулирования, реализующей принцип управления по отклонению (принцип Ползунова-Уатта). 3. Комбинированной системы управления. 4. Разомкнутой системы управления с жесткой программой.
19	Что называется передаточной функцией?	1. Отношение изображения по

		Лапласу выходного сигнала к изображению по Лапласу входного сигнала при не нулевых начальных условиях. 2. Отношение изображения по Лапласу входного сигнала к изображению по Лапласу выходного сигнала при нулевых начальных условиях.
		3. Отношение выходного сигнала к входному.
		4. Отношение изображения по Лапласу выходного сигнала к изображению по Лапласу входного сигнала при нулевых начальных условиях.
20	Что называется переходной характеристикой системы?	 Реакция её на входной сигнал в виде δ-функции (функции Дирака). Реакция её на входной сигнал в виде единичной функции (функции Хевисайда). Зависимость выходного сигнала от входного. Реакция системы на случайный сигнал.

Вариант 2

No n/n	Bonpoc	Варианты ответа
1	Как расшифровывается аббревиатура САУ?	 Система автоматизированного управления Система автоматического управления Система аналитического управления Система автоманого управления
2	Что обозначено буквой z на рисунке?	1. Неизвестная величина. 2. Управляющее воздействие 3. Возмущающее воздействие 4. Регулируемая величина
3	Что обозначено буквами ВЭ на схеме?	1. Выпрямитель электронный 2. Вычислитель электронный

8	Какому типу схемы преобразования	1. Прямого однократного
	соответствует приведенной уравнение	преобразования.
	статической характеристики?	2. Последовательного прямого
	$y = K_1 x$	преобразования
	2 - 24-	3. Дифференциального
		преобразования
		4. Компенсационного
	**	преобразования
9	Что называется передаточной функцией?	1. Отношение изображения по
		Лапласу выходного сигнала к изоб-
		ражению по Лапласу входного сигнала при не нулевых начальных
		условиях.
		2. Отношение изображения по
		Лапласу входного сигнала к изобра-
		жению по Лапласу выходного сигна-
		ла при нулевых начальных условиях.
		3. Отношение выходного сигнала к
		входному.
		4. Отношение изображения по
		Лапласу выходного сигнала к изоб-
		ражению по Лапласу входного сиг-
		нала при нулевых начальных усло-
		виях.
10	Что такое амплитудочастотная	1. Зависимость амплитуды и частоты
	характеристика?	сигнала на выходе системы от ам-
		плитуды и частоты сигнала на входе
		системы.
		2. Зависимость амплитуды сигнала
		на выходе системы от частоты сиг-
		нала на входе системы. 3. Зависимость амплитуды сигнала
		на выходе системы от частоты сиг-
		нала на выходе системы
		4. Зависимость амплитуды сигнала
		на входе системы от частоты сигнала
		на выходе системы.
11	Статическая характеристика какого не-	1. Элемента с зоной нечувствитель-
	линейного элемента приведена на рисун-	ности.
	ке?	2. Элемента с насыщением.
	X _{Baix}	3. Релейного элемента.
		4. Элемента с гистерезисом.
		5. Элемента с ограничением уровня.
	X _{BX}	
	^ax	
	I	I

12	Переходная характеристика какого звена приведена на рисунке? h(t)	 Апериодического. Дифференцирующего. Интегрирующего. Колебательного
13	Какая система называется астатической?	Система, в которой статическая ошибка меньше 5 % от установившегося значения. Система, в которой статическая ошибка равна нулю. Система, в которой статическая ошибка равна нулю.
		4. Система, которая не может прибывать в установившемся состоянии.
14	Передаточная функция какого регулятора имеет вид $W(p) = K_p + \frac{1}{T_p p}?$	 Интегрального. Пропорционального Пропорционально-интегрального (ПИ). Пропорционально-интегрально-дифференциального (ПИД)?
15	Какому алгоритму управления соответствует уравнение $u(t) = k_{\prod} \varepsilon(t) ?$	1. Интегральному. 2. Пропорциональному. 3. Пропорционально-интегральному (ПИ). 4. Пропорционально-интегрально-дифференциальному (ПИД)?
16	Для чего предназначены локальные системы автоматизации?	1. Для повышения эффективности работы всего нефтедобывающего предприятия в целом. 2. Для замены ручного труда на механизированный. 3 Для повышения эффективности работы отдельных установок, процессов, агрегатов. 4 Для уменьшения численности обслуживающего персонала.
17	График развития во времени какого процесса представлен на рисунке?	 Дискретного во времени. С квантованием по уровню. Процесса в виде дискретных событий. Непрерывного процесса

		-
18	Что называется регулированием?	1. Процесс изменения управляющих воздействий на объект по жесткой программе. 2. Процесс изменения какого-либо управляющего параметра случайным образом. 3. Процесс поддержания какого-либо параметра объекта равным заданной величине с заданной точностью. 4. Ручное изменение параметров управляющего устройства.
19	В каком случае система называется инвариантной по отношению к некоторому возмущению?	 Если состояние системы зависит только от данного возмущения. Если данное возмущающее воздействие не зависит от состояния системы. Если состояние системы не зависит от данного возмущения. Если имеется несколько вариантов реакции системы на возмущающее воздействие
20	Обозначение какого элемента структурной схемы приведено на рисунке?	 Сумматора. Элемента сравнения. Регулятора. Лампочки накаливания.

Вариант 3

№ n/n	Вопрос	Варианты ответа
1	Как расшифровывается аббревиатура ACУ?	1. Автоматическая система управления 2. Автоматизированная система управления 3. Автономная система управления 4. Аналитическая система управления управления.
2	Что обозначено буквой у на рисунке?	 Неизвестная величина. Управляющее воздействие Возмущающее воздействие Регулируемая величина
3	Что обозначено буквами ИЭ на схеме? —————————————————————————————————	 Индикаторный элемент Изолирующий элемент Измерительный элемент Исполнительный элемент

4	Для чего служат исполнительные элементы?	1. Для измерения контролируемой величины объектов управления и преобразования ее в вид, удобный для дальнейшего использования в системах автоматики. 2. Для задания требуемого значения контролируемой или регулируемой величины 3. Для сравнения контролируемой величины с заданной величиной и выработки сигнала, соответствующего величине и знаку рассогласования 4. Для воздействия на органы управления объектом по величине и знаку управляющего сигнала	
5	В каких единицах выражается относительная погрешность датчика?	1. В единицах измеряемой величины 2. В единицах выходной величины 3. В процентах 4. В радианах	
6	Какая погрешность определяется по	1. Абсолютная	
	приведенной формуле?	2. Относительная	
	$\gamma_{\text{прив}} = \Delta y \cdot 100/y_{\text{max}}$	3. Приведенная 4. Динамическая	
7	Статическая характеристика какого не-	1. Элемента с зоной нечувствитель-	
	линейного элемента приведена на рисун-	ности и гистерезисом.	
	ke?	2. Элемента с насыщением.	
	**************************************	3. Релейного элемента с зоной нечувствительности.	
		4. Релейного элемента с гистерези-	
		com.	
	× X _{BX}		
8	Какому типу схемы преобразования	1. Прямого однократного	
	соответствует приведенная схема?	преобразования.	
	$x \bigcirc [y] \delta_1 y$	2. Последовательного прямого	
	K ₁	преобразования	
	γος δ2	3. Дифференциального	
	K ₂	преобразования 4. Компенсационного	
		преобразования	
9	Какому типу схемы преобразования	1. Прямого однократного	
	соответствует приведенной уравнение	преобразования.	
	статической характеристики?	2. Последовательного прямого	
	n	преобразования	
	$y = \prod K_i x$	3. Дифференциального	
	$\hat{i}=\hat{1}$	преобразования	

		4. Компенсационного
		преобразования
10	Передаточная функция какого	1. Колебательного.
	элементарного звена имеет вид	2. Интегрирующего.
	$W(p) = Ke^{-p\tau}?$	3. Дифференцирующего.
	()	4. Звена запаздывания.
11	Переходная характеристика какого звена	1. Апериодического.
	приведена на рисунке?	2. Дифференцирующего.
	h(t)	3. Интегрирующего.
		4. Звена запаздывания.
	 t	
12	Передаточная функция какого регулятора	1. Интегрального.
	имеет вид	2. Дифференциального.
	$W(p) = \frac{1}{T_{p}p}$?	3. Пропорционального
	$\int_{-p}^{p} p$	4. Пропорционально-интегрального
13	Vokov kovenský koom over a sverence a s	(ПИ).
13	Какой критерий настройки регуляторов	1. 20%-перерегулирование.
	применяется наиболее часто?	2. Максимум интеграла от квадрата ошибки.
		3. Максимум ошибки регулирования.
		4. Минимум сигнала управления.
14	Как называется система, если процесс	1. Автоматизированной.
	управления выполняется только с	2. Частично автоматизированной.
	помощью технических средств без	3. Автоматической.
	непосредственного участия человека?	4. Системой регулирования.
15	График развития во времени какого про-	1. Дискретного во времени.
	цесса представлен на рисунке?	2. Непрерывного во времени.
	h(t)	3. Процесса в виде дискретных со-
		бытий.
		4. Аналогового.
	t, c	
16	Структурная схема какой системы приве-	1. Системы компенсации, реализую-
10	дена на рисунке?	щей управление по возмущению
		(принцип Понселе).
		2. Системы регулирования, реализу-
	x_3 yy y y y y	ющей принцип управления по от-
		клонению (принцип Ползунова-
		Уатта).
		3. Комбинированной системы управ-
		ления.
		4. Разомкнутой системы управления
		с жесткой программой.
1		l l

17	Статическая характеристика какого нелинейного элемента приведена на рисунке?	 Элемента с зоной нечувствительности. Элемента с насыщением. Релейного элемента. Элемента с ограничением уровня.
18	Передаточная функция какого элементарного звена имеет вид $W(p) = \frac{k}{Tp-1}?$	 Интегрирующего. Дифференцирующего. Апериодического. Ни одного из вышеперечисленных
19	Переходная характеристика какого звена приведена на рисунке? h(t) t	 Апериодического. Дифференцирующего. Колебательного. Звена запаздывания.
20	Передаточная функция какого регулятора имеет вид $W(p) = K_{\coprod} p^{?}$	1. Интегрального. 2. Дифференциального. 3. Пропорционального 4. Пропорционально-интегрального (ПИ).

6.3. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

6.3.1. Критерии оценок промежуточной аттестации (дифф. зачет)

Оценка			
«2»	Пороговый уровень освоения	Углубленный уровень освоения	Продвинутый уровень освоения
(неудовлетворительно)	«3» (удовлетворительно)	«4» (хорошо)	«5» (отлично)
Студент не знает значительной части материала, допускает существенные ошибки в ответах на вопросы	Студент поверхностно знает материал основных разделов и тем учебной дисциплины, допускает неточности в ответе на вопрос	Студент хорошо знает материал, грамотно и по существу излагает его, допуская некоторые неточности в ответе на вопрос.	Студент в полном объёме знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос
Не умеет находить решения большинства	Иногда находит решения,	Уверенно находит решения,	Безошибочно находит
предусмотренных программой обучения заданий	предусмотренные программой обучения заданий	предусмотренные программой обучения заданий	решения, предусмотренные программой

Оценка			
«2»	Пороговый уровень освоения	Углубленный уровень освоения	Продвинутый уровень освоения
(неудовлетворительно)	«3»	«4»	«5»
	(удовлетворительно)	(хорошо)	(отлично)
			обучения заданий
Большинство предусмотренных программой обучения заданий не выполнено	Предусмотренные программой обучения задания выполнены удовлетворительно	Предусмотренные программой обучения задания успешно выполнены	Предусмотренные программой обучения задания успешно выполнены

Примерная шкала оценивания знаний в тестовой форме:

Количество правильных ответов,	Оценка
% 0-49	Неудовлетворительно
50-65	Удовлетворительно
66-85	Хорошо
86-100	Отлично

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ПИПЛИНЫ

7.1.1 Основная литература

- 1. Тарасик В.П. Математическое моделирование технических систем: учебник [Электронный ресурс]- М.:НИЦ ИНФРА-М, 2016. 592 с.: 70х100 1/16 http://znanium.com/catalog.php?bookinfo=549747
- 2. Математическое моделирование и проектирование : учеб. пособие [Электронный ресурс]/ А.С. Коломейченко, И.Н. Кравченко, А.Н. Ставцев, А.А. Полухин ; под ред. А.С. Коломейченко. М. : ИНФРА-М, 2018. 181 с. http://znanium.com/catalog.php?bookinfo=884599
- 3. Трофимов, В. Б. Интеллектуальные автоматизированные системы управления технологическими объектами: учебное пособие [Электронный ресурс] / В. Б. Трофимов, С. М. Кулаков. 2-е изд., испр. Москва; Вологда: Инфра-Инженерия, 2020. 256 с. https://znanium.com/catalog/product/1167725.
- 4. Жуков, Б. М. Исследование систем управления : учебник [Электронный ресурс] / Б. М. Жуков, Е. Н. Ткачева. 2-е изд., стер. Москва : Издательско-торговая корпорация «Дашков и К°», 2020. 206 с. https://znanium.com/catalog/product/1093661
- 5. Осипова, Н. В. Математическое моделирование объектов и систем управления : учебное пособие [Электронный ресурс] / Н. В. Осипова. Москва : Изд. Дом НИТУ «МИСиС», 2019. 67 с. https://znanium.com/catalog/product/1231400.
- 6. Васильков, Ю. В. Математическое моделирование объектов и систем автоматического управления: учебное пособие [Электронный ресурс] / Ю. В. Васильков, Н. Н. Василькова. Москва: Вологда: Инфра-Инженерия, 2020. 428 с. https://znanium.com/catalog/product/1167744.

7.1.2. Дополнительная литература

- 1. Моделирование систем управления с применением Matlab: Учебное пособие [Электронный ресурс] / А.Н. Тимохин, Ю.Д. Румянцев. М.: НИЦ ИНФРА-М, 2016. 256 с. http://znanium.com/catalog.php?bookinfo=474709
- 2. Матвеев, А. С. Введение в математическую теорию оптимального управления : учебник [Электронный ресурс] / А.С. Матвеев. Санкт-Петербург : СПбГУ, 2018. 194 с. https://znanium.com/catalog/product/1244354.

- 3. Емельянов, С. Г. Автоматизированные нечетко-логические системы управления : монография [Электронный ресурс] / С.Г. Емельянов, В.С. Титов, М.В. Бобырь. Москва : ИНФРА-М, 2021. 175 с https://znanium.com/catalog/product/1167848.
- 4. Мыльник, В. В. Исследование систем управления: Учебное пособие [Электронный ресурс] / Мыльник В.В., Титаренко Б.П., 2-е изд. М.:ИЦ РИОР, НИЦ ИНФРА-М, 2019. 238 с. https://znanium.com/catalog/product/1009038.
- 5. Чикуров, Н. Г. Синтез дискретно-логических систем управления : учеб. пособие[Электронный ресурс] / Н.Г. Чикуров. Москва : ИНФРА-М, 2018. 229 с. https://znanium.com/catalog/product/916073.
- 6. Ившин, В. П. Современная автоматика в системах управления технологическими процессами: учебник [Электронный ресурс] / В.П. Ившин, М.Ю. Перухин. 3-е изд., испр. и доп. Москва: ИНФРА-М, 2021. 407 с. https://znanium.com/catalog/product/1216659.

7.1.3. Учебно-методическое обеспечение

- 1. Моделирование систем управления с применением Matlab: Учебное пособие [Электронный ресурс] / А.Н. Тимохин, Ю.Д. Румянцев. М.: НИЦ ИНФРА-М, 2016. 256 с. http://znanium.com/catalog.php?bookinfo=474709.
- 2. Гончаренко, А. Н. Надежность АСОИУ: методические указания [Электронный ресурс] // А. Н. Гончаренко. Москва: Изд. Дом НИТУ «МИСиС», 2018. 44 с. https://znanium.com/catalog/product/1232234.
- 3. Решмин, Б. И. Имитационное моделирование и системы управления: Учебно-практическое пособие [Электронный ресурс] / Решмин Б.И. Вологда:Инфра-Инженерия, 2016. 74 с. https://znanium.com/catalog/product/760003.
- 4. Жмудь, В. А. Моделирование и численная оптимизация замкнутых систем автоматического управления в программе VisSim: учебное пособие [Электронный ресурс] / В. А. Жмудь. Новосибирск: НГТУ, 2016. 124 с. https://znanium.com/catalog/product/.

7.2. Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Европейская цифровая библиотека Europeana: http://www.europeana.eu/portal
- 2. Информационно-издательский центр по геологии и недропользованию Министерства природных ресурсов и экологии Российской Федерации ООО "ГЕОИНФОРММАРК"-http://www.geoinform.ru/
- 3. Информационно-аналитический центр «Минерал» http://www.mineral.ru/
- 4. КонсультантПлюс: справочно поисковая система [Электронный ресурс]. www.consultant.ru/.
- 5. Мировая цифровая библиотека: http://wdl.org/ru
- 6. Научная электронная библиотека «Scopus» https://www.scopus.com
- 7. Научная электронная библиотека ScienceDirect: http://www.sciencedirect.com
- 8. Научная электронная библиотека «eLIBRARY»: https://elibrary.ru/
- 9. Поисковые системы Yandex, Google, Rambler, Yahoo и др.
- 10. Система ГАРАНТ: электронный периодический справочник [Электронный ресурс] www.garant.ru/.
- 11. Термические константы веществ. Электронная база данных, http://www.chem.msu.su/cgibin/tkv.pl
- 12. Электронная библиотека Российской Государственной Библиотеки (РГБ): http://www.rsl.ru/
- 13. Электронная библиотека учебников: http://studentam.net
- 14. Электронно-библиотечная система издательского центра «Лань»

https://e.lanbook.com/books.

- 15. Электронно-библиотечная система «ЭБС ЮРАЙТ» www.biblio-online.ru.
- 16. Электронная библиотечная система «Национальный цифровой ресурс «Руконт»». http://rucont.ru/
- 17. Электронно-библиотечная система http://www.sciteclibrary.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Материально-техническое оснащение аудиторий:

Специализированные аудитории, используемые при проведении занятий лекционного типа, практических занятий, оснащены мультимедийными проекторами и комплектом аппаратуры, позволяющей демонстрировать текстовые и графические материалы.

Аудитории для проведения лекционных занятий

Аудитория оснащена следующим оборудованием: 26 посадочных мест, Стол $210\times60\times72$ — 13 шт, Стул ИСО — 37 шт, Доска под фломастер 100×200 — 1 шт, Стол преподавателя с трибуной $160\times55\times72$ — 1 шт, Рамка 1190×890 — 8 шт.

Аудитории для проведения лабораторных и практических занятий

Лабораторные и практические занятия выполняются в компьютерном классе кафедры.

Аудитория оснащена следующим оборудованием: 12 посадочных мест. Блок системный RAMEC GALE AL с монитором BenQ GL2450 (тип 1) - 13 шт. (возможность подключения к сети «Интернет»), стол -15 шт., стул -21 шт., доска маркерная - 1 шт., принтер Xerox Phaser 4600DN - 1 шт., плакат в рамке -10 шт.

8.2. Помещения для самостоятельной работы:

Аудитория оснащена следующим оборудованием:

14 посадочных мест

Принтер Xerox Phaser 4600DN - 1 шт., Блок системный RAMEC GALE AL с монитором BenQ GL2450 (тип 1) - 15 шт. (возможность подключения к сети «Интернет»), стол - 17 шт., стул - 27 шт., доска маркерная - 1 шт., плакат в рамке - 31шт.

В учебном процессе используется комплект демонстрационных стендовых материалов по курсу управления взаимосвязанными электромеханическими комплексами.

8.3. Помещения для хранения и профилактического обслуживания оборудования:

1. Центр новых информационных технологий и средств обучения:

Оснащенность: персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -4 шт., сетевой накопитель -1 шт., источник бесперебойного питания -2 шт., телевизор плазменный Panasonic -1 шт., точка Wi-Fi -1 шт., паяльная станция -2 шт., дрель -5 шт., перфоратор -3 шт., набор инструмента -4 шт., тестер компьютерной сети -3 шт., баллон со сжатым газом -1 шт., паста теплопроводная -1 шт., пылесос -1 шт., радиостанция -2 шт., стол -4 шт., тумба на колесиках -1 шт., подставка на колесиках -1 шт., шкаф -5 шт., кресло -2 шт., лестница Alve -1 шт.

2. Центр новых информационных технологий и средств обучения:

Оснащенность: стол - 5 шт., стул - 2 шт., кресло - 2 шт., шкаф - 2 шт., персональный компьютер - 2 шт. (доступ к сети «Интернет»), монитор <math>- 2 шт., МФУ - 1 шт., тестер компьютерной сети - 1 шт., балон со сжатым газом - 1 шт., шуруповерт - 1 шт.

3. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -2 шт., стуля -4 шт., кресло -1 шт., шкаф -2 шт., персональный компьютер -1 шт. (доступ к сети «Интернет»), веб-камера Logitech HD C510 -1 шт., колонки Logitech -1 шт., тестер компьютерной сети -1 шт., дрель -1 шт., телефон -1 шт., набор ручных инструментов -1 шт.

8.4. Лицензионное программное обеспечение:

Місгоѕоft Windows 7 Professional:ГК № 1464-12/10 от 15.12.10 «На поставку компьютерного оборудования» ГК № 959-09/10 от 22.09.10 «На поставку компьютерной техники» ГК № 447-06/11 от 06.06.11 «На поставку оборудования» ГК № 984-12/11 от 14.12.11 «На поставку оборудования" Договор № 1105-12/11 от 28.12.2011 «На поставку компьютерного оборудования», Договор № 1106-12/11 от 28.12.2011 «На поставку компьютерного оборудования» ГК № 671-08/12 от 20.08.2012 «На поставку продукции», МісгоѕоftОрепLicense 60799400 от 20.08.2012, MicroѕoftOpenLicense 49379550 от 29.11.2011, MicroѕoftOpenLicense 49487710 от 20.12.2011, MicroѕoftOpenLicense 49379550 от 29.11.2011, MicroѕoftOpenLicense 60853086 от 31.08.2012 Каѕрегѕкуапtivirus 6.0.4.142.