ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ

СОГЛАСОВАНО УТВЕРЖДАЮ

Руководитель ОПОП ВО профессор В.А. Шпенст

Проректор по образовательной деятельности Д.Г. Петраков

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

Уровень высшего образования: Специалитет

Специальность: 21.05.04 Горное дело

Направленность (профиль): Электрификация и автоматизация горного

производства

Квалификация выпускника: горный инженер (специалист)

Форма обучения: очная

Составитель: доц. Коржев А.А

Рабочая программа дисципл	ины «Промышленная электроника» разработана:		
- в соответствии с требованиями ФГОС ВО - специалитет по специальности «21.05.04			
Горное дело», утвержденного приказом Минобрнауки России №987 от 12 августа 2020 г.;			
- на основании учебного плана сп	ециалитета «21.05.04 Горное дело», направленность		
(профиль) «Электрификация и автом	атизация горного производства».		
Составители:	к.т.н., доц. А.А. Коржев		
Рабочая программа расс	смотрена и одобрена на заседании кафедры		
электроэнергетики и электромеханик	ки от 22.01.2021 г., протокол № 12/01.		
	•		
Заведующий кафедрой	д.т.н., проф. В.А. Шпенст		
Рабочая программа согласов	вана:		
Начальник отдела			
	вана: Ю.А. Дубровская		
Начальник отдела лицензирования, аккредитации и			

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель изучения дисциплины «Промышленная электроника» - формирование у студентов базовых знаний в области промышленной электроники, подготовка выпускников к решению профессиональных задач, связанных с применением электронных приборов и устройств в промышленности, формирование у студентов современного научного мировоззрения, развитие творческого естественно-научного мышления, ознакомление с методологией научных исследований.

Основные задачи дисциплины:

- изучение принципов работы полупроводниковых приборов и устройств на их основе;
- овладение методами расчёта анализа и синтеза электронных схем различного назначения, а также использование данных методов при организационноуправленческой деятельности;
- формирование: представлений о физических процессах в полупроводниковых приборах, интегральных микросхемах и электронных устройствах; навыков чтения схем существующих электронных устройств и разработки новых устройств на базе электронных приборов; навыков практического применения инженерных методов расчётиов электронных устройств, способностей для проектирования и использования электронной аппаратуры, мотивации к самостоятельному повышению уровня профессиональных навыков в области промышленной электроники.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Промышленная электроника» относится к части, формируемой участниками образовательных отношений основной профессиональной образовательной программы по направлению подготовки 21.05.04 Горное дело» направленность (профиль) «Электрификация и автоматизация горного производства» и изучается в пятом и шестом семестрах.

Предшествующими основополагающими дисциплинами для дисциплины «Промышленная электроника» являются дисциплины: «Физика», «Химия», «Электротехническое и конструкционное материаловедение», «Электротехника».

Дисциплина «Промышленная электроника» является основополагающей для дисциплин: «Элементы систем автоматики», «Электрические и электронные аппараты», «Электрические и электронные аппараты», «Автоматизированный электропривод машин и установок горного производства», «Цифровая схемотехника», «Автоматика машин и установок горного производства».

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины «Промышленная электроника» направлен на формирование следующих компетенций:

Формируемые компетенции по ФГОС ВО		Основные показатели	
Содержание компетенции	Код компетенции	освоения программы дисциплины	
Способен участвовать в проектировании систем автоматического управления горного	ПКС-4	ПКС-4.1. Знать: схемы и классификацию систем автоматического управления горного производства; устройство и принципы действия элементов и устройств, входящих в состав систем автоматического	

Формируемые компо по ФГОС ВО		Основные показатели	
Содержание компетенции	Код компетенции	освоения программы дисциплины	
		управления горного производства; принципы	
		построения и функционирования систем	
		автоматического управления, горного производства	
		ПКС-4.2. Уметь: использовать методы расчета основных параметров и характеристик электрических систем; осуществлять обоснованный выбор элементов и устройств, входящих в состав систем автоматического управления горного производства ПКС-4.3. Владеть: базовыми навыками проектирования систем автоматического управления горного производства	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины «Физические основы электроники» составляет 5 зачетных единиц, 180 ак. часов.

Dun was fire it not one	Danna ava vaasa	Ак. часы по семестрам		
Вид учебной работы	Всего ак. часов	5	6	
Аудиторные занятия, в том числе:	66	34	32	
Лекции	33	17	16	
Практические занятия (ПЗ)	-	-	-	
Лабораторные работы (ЛР)	33	17	16	
Самостоятельная работа студентов (СРС), в том числе	78	38	40	
Выполнение курсовой работы (проекта)	-	-	-	
Подготовка к практическим занятиям	-	-	-	
Оформление отчетов и защита лабораторных работ	78	38	40	
Оформление и защита контрольных работ	-	_	-	
Оформление и защита рефератов	-	_	-	
Оформление и защита расчетно-графических заданий	-	-	-	
Вид промежуточной аттестации – зачёт, экзамен	36	-	36	
Общая трудоемкость дисциплины				
ак. час.	180	72	108	
зач. ед.	5	2	3	

4.2. Содержание дисциплины

Учебным планом предусмотрены: лекции, лабораторные работы и самостоятельная работа.

4.2.1. Разделы дисциплины и виды занятий

			Виды занятий				
№ п/п	Наименование разделов	Всего ак. часов	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа студента	
1.	Раздел 1 «Полупроводниковые приборы»	16	8	-	7	16	
2.	Раздел 2 «Маломощные электронные источники питания»	32	6	-	7	16	
3.	Раздел 3 «Электронные усилители»	32	6	-	7	16	
4.	Раздел 4 «Генераторные устройства»	32	6	-	6	15	
5.	Раздел 5 «Импульсные устройства. Цифровые и логические устройства»	32	7	-	6	15	
	Итого:	144	33	•	33	78	

4.2.2. Содержание разделов дисциплины

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак. часах
1.	Раздел 1	Полупроводники и их свойства. Р-п-переход. Полупроводниковые диоды. Биполярные транзисторы. Полевые транзисторы. Тиристоры. Интегральные микросхемы.	8
2.	Раздел 2	Линейные и импульсные источники питания. Электронные выпрямители. Сглаживающие фильтры. Линейные и импульсные стабилизаторы. Преобразователи постоянного напряжения. Инверторы.	6
3.	Раздел 3	Классификация усилителей. Параметры усилителей. Усилительные каскады. Обратная связь в усилителях. Классы усиления. Усилители низкой частоты. Усилители мощности. Усилители высокой частоты. Усилители постоянного тока. Операционные усилители и схемы на их основе.	6
4.	Раздел 4	Классификация генераторных устройств. Условия самовозбуждения генератора. LC-генераторы. RC-генераторы. Генераторы импульсов. Генераторы напряжения специальной формы.	6
5.	Раздел 5	Логические элементы. Базовые структуры цифровых интегральных микросхем. Триггеры. Комбинационные схемы. Счётчики и регистры. Арифметико-логические устройства. Запоминающие устройства. Цифроаналоговые и аналого-цифровые преобразователи. Микропроцессоры и микроконтроллеры.	7
		Итого:	33

4.2.3. Практические занятия

Практические занятия не предусмотрены

4.2.4. Лабораторные работы

№ п/п	Раздел	Тематика лабораторных работ	Трудоемкость в ак. часах
		Исследование диодов	2
1.	Раздел 1.	Исследование биполярных транзисторов	4
		Исследование полевых транзисторов	2
		Исследование выпрямителей	2
2.	Раздел 2	Исследование стабилизаторов	2
		Исследование импульсных преобразователей постоянного напряжения	2
3.	Раздел 3	Исследование усилителя низкой частоты	4
3.		Операционные усилители и операционные схемы	2
4	D 4	Исследование LC-генератора	4
4.	Раздел 4	Исследование RC-генератора	2
		Исследование логических элементов	4
5.	Раздел 5	Исследование элементов цифровой автоматики	3
		Итого:	33

4.2.5. Курсовая работа (проект)

Курсовые работы (проекты) не предусмотрены

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе обучения применяются:

Лекции, которые являются одним из важнейших видов учебных занятий и составляют основу теоретической подготовки обучающихся. Цели лекционных занятий:

-дать систематизированные научные знания по дисциплине, акцентировать внимание на наиболее сложных вопросах дисциплины;

-стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Лабораторные работы. Цели лабораторных занятий:

-углубить и закрепить знания, полученные на лекциях и в процессе самостоятельной работы обучающихся с учебной и научной литературой;

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности.

Консультации (текущая консультация, накануне экзамена) является одной из форм руководства учебной работой обучающихся и оказания им помощи в самостоятельном изучении материала дисциплины, в ликвидации имеющихся пробелов в знаниях, задолженностей по текущим занятиям, в подготовке письменных работ (проектов).

Текущие консультации проводятся преподавателем, ведущим занятия в учебной группе, научным руководителем и носят как индивидуальный, так и групповой характер.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других занятиях, выработку навыков самостоятельного активного

приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточному контролю.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

6.1. Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Раздел 1. Полупроводниковые приборы

- 1. Какими основными свойствами обладает p-n –переход и в каких диодах они проявляются?
- 2. Какие виды пробоя различают?
- 3. Чем принципиально отличаются друг от друга электрический и тепловой пробои?
- 4. Как зависит ширина запирающего слоя р п перехода от приложенного напряжения?
- 5. На каком принципе работает кремниевый стабилитрон?
- 6. Чем отличается динистор от тиристора?
- 7. В чем состоит основное назначение транзистора?
- 8. Какая из схем включения биполярного транзистора является самой распространенной усилительной схемой и почему?
- 9. Какая из схем включения биполярного транзистора не усиливает напряжение?
- 10. Как связаны между собой токи эмиттера, базы и коллектора?
- 11. Почему схема с общим коллектором называется эмиттерным повторителем?
- 12. Какие основные разновидности полевых транзисторов Вы знаете, и какая из них является самой распространенной?
- 13. Какие схемы включения униполярных транзисторов и их основные характеристики известны?
- 14. Какими преимуществами обладают полевые транзисторы по сравнению с биполярными?
- 15. Назовите недостатки полевых транзисторов.
- 16. Какие основные параметры полевых транзисторов Вам известны?
- 17. Что называют оптроном?
- 18. Какова область применения оптронов?
- 19. В чем преимущества оптронов перед приборами с электрической связью?
- 20. В чем отличие полупроводниковых ИМС от гибридных в микроминиатюризации электронных устройств?
- 21. Что такое «плотность упаковки»?
- 22. Что такое «степень интеграции»?
- 23. Что обозначают две буквы в условном обозначении ИМС?

Раздел 2. Маломощные электронные источники питания

- 1. Каково назначение выпрямительного устройства?
- 2. Что такое внешняя характеристика маломощного выпрямителя?
- 3. Чем объясняется наклон внешней характеристики при работе на активную нагрузку и с L и C- фильтрами?
- 4. Может ли кремниевый стабилитрон работать без балластного сопротивления?
- 5. Какую роль в компенсационном стабилизаторе выполняет параметрический стабилизатор?

Раздел 3. Электронные усилители

- 1. В чем состоит эффект усиления?
- 2. Что такое коэффициенты усиления по мощности, напряжению, току?
- 3. Чем отличаются частотные характеристики усилителя напряжения низкой частоты и усилителя постоянного тока?
- 4. Какова специфика выходных каскадов усиления?

5. Каковы свойства идеального операционного усилителя? Чем обусловлена необходимость обеспечения каждого из этих свойств?

Раздел 4. Генераторные устройства

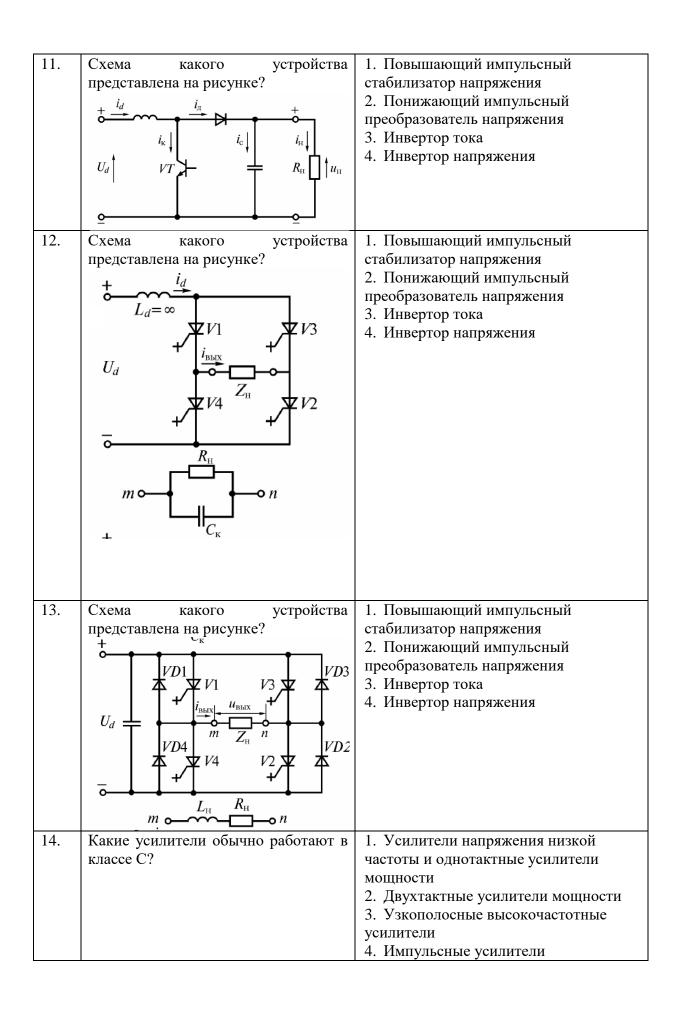
- 1. Что дает введение положительной обратной связи в усилитель?
- 2. В чем состоят условия самовозбуждения генератора?
- 3. Какие разновидности генераторов гармонических колебаний существуют?
- 4. Какие схемы автогенераторов называют « трехточечными»?
- 5. В схемах каких генераторов используется мост Вина?

Раздел 5. Импульсные устройства. Цифровые и логические устройства

- 1. Какой режим работы транзистора называется ключевым?
- 2. Какие Вы знаете способы использования транзистора в режиме ключа?
- 3. Как выглядит передаточная характеристика ОУ?
- 4. Приведите примеры применения ОУ?
- 5. Что называют компаратором и триггером Шмитта?
- 6. Какое устройство называют комбинационным?
- 7. Что такое декодер?
- 8. Назовите примеры применения ЦАП и АЦП.
- 9. Какую систему называют микропроцессорной?

6.2. Оценочные средства для проведения промежуточной аттестации (экзамена) 6.2.1. Примерный перечень вопросов/заданий к экзамену:

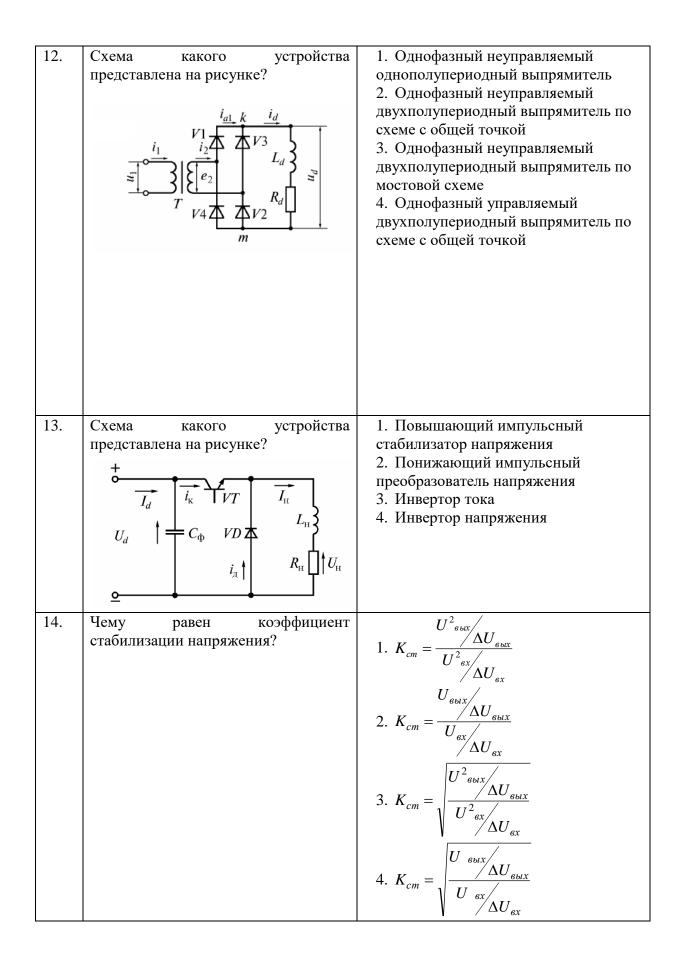
- 1. Какие вещества относятся к полупроводникам?
- 2. В чем их отличие от проводников и диэлектриков?
- 3. Что такое полупроводники р и п-типа?
- 4. Какие носители заряда являются основными для полупроводников р и п-типа?
- 5. Что такое донорная и акцепторная примеси?
- 6. За счёт движения каких частиц происходит электронная и дырочная проводимость?
- 7. Что такое основные и не основные носители заряда?
- 8. Что называют прямым и обратным включением p-n-перехода?
- 9. Что такое ток диффузии и ток дрейфа?
- 10. Как соотносятся ток диффузии и ток дрейфа при отсутствии внешнего поля, при прямом и обратном включении?
- 11. Что такое электрический и тепловой пробой р-п-перехода?
- 12. Что такое лавинный и туннельный эффект?
- 13. Как зависит ёмкость p-n-перехода от обратного напряжения?
- 14. Как выглядит вольт-амперная характеристика р-п-перехода?
- работы соответствуют 15. Каким режимам различные участки вольт-амперной характеристики р-п-перехода?
- 16. Как на схеме обозначают выпрямительный диод, стабилитрон, варикап, светодиод, фотодиод, туннельный диод, диод Шотки, оптоэлектронную пару?
- 17. Какие буквенные обозначения используют на схемах для диодов, транзисторов, тиристоров, аналоговых и цифровых микросхем?
- 18. Как на схемах обозначают биполярный транзистор p-n-p, n-p-n-типа?
- 19. Как на схемах обозначают полевые транзисторы с затвором в виде р-п-перехода, МДПтранзистор со встроенным и индуцированным каналами р и п-типа?
- 20. На каких свойствах р-п-перехода работают выпрямительный диод, стабилитрон, варикап, светодиод, фотодиод, туннельный диод?
- 21. Как выглядит вольт-амперная характеристика выпрямительного диода, стабилитрона, варикапа, светодиода, фотодиода, туннельного диода?

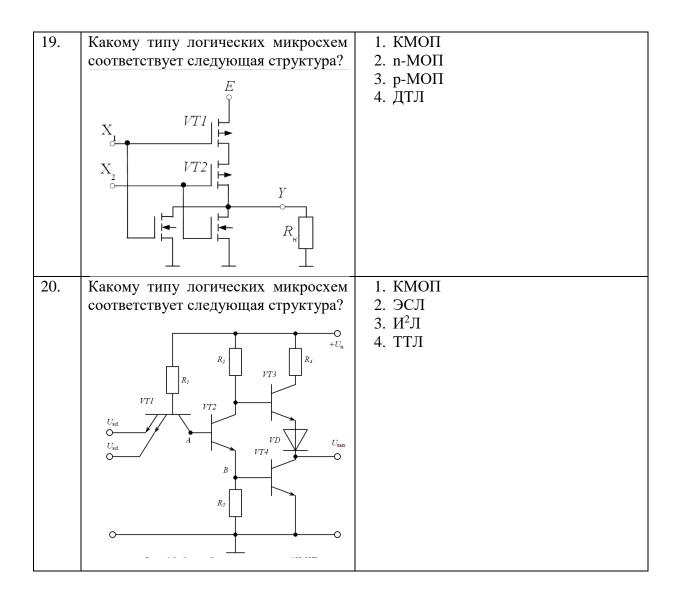

- 22. Как выглядят схемы включения биполярного транзистора с общей базой, с общим эмиттером, с общим коллектором?
- 23. Как выглядят схемы включения полного транзистора с общим истоком и с общим стоком?
- 24. Как выглядят входные, выходные и проходные характеристики транзисторов различного типа?
- 25. Какой физический смысл каждого из h-параметров биполярного транзисторов?
- 26. Чему равен коэффициент усиления по току схем общей базой, с общим эмиттером, с общим коллектором? Каковы из вхрдные и выходные сопротивления?
- 27. Как устроены биполярный транзистор p-n-p, n-p-n-типа?
- 28. Как устроены полевые транзисторы с затвором в виде p-n-перехода, МДП-транзистор со встроенным и индуцированным каналами р и n-типа?
- 29. Как обозначают на схемах незапираемый тиристор, запираемый тиристор с управлением по аноду и катоду?
- 30. Как устроен и какой вольтамперной характеристикой обладает тиристор?
- 31. В чём преимущества силовых транзисторов перед тиристорами и наоборот?
- 32. В чем достоинства и недостатки интегральных микросхем различного типа?
- 33. Как устроен однополупериодный выпрямитель, двухполупериодный выпрямитель по схемам с общей точкой и по мостовой схеме?
- 34. Как выглядят схемы понижающего и повышающего импульсных преобразователей постоянного напряжения?
- 35. Как выглядят схемы инвертора тока, инвертора напряжения?
- 36. Что такое коэффициенты пульсации, сглаживания, стабилизации? По каким формулам их определяют?
- 37. Как устроены индуктивный, ёмкостный, Г, Т и П-обраный сглаживающие фильтры? В чём преимущества активных фильтров? Как их коэффициент сглаживания зависят от тока нагрузки?
- 38. Как выглядит схема параметрического стабилизатора напряжения? Каково назначение каждого из входящих в её состав элементов?
- 39. Как выглядит схема компенсационного стабилизатора напряжения? Каково назначение каждого из входящих в её состав элементов?
- 40. Как выглядит структурная схема источника питания? Каково назначение каждого из входящих в её состав элементов?
- 41. На каком участке входной характеристики выбирают рабочую точку при работе усилителя в режиме класса A, AB, B, C, D? В чём преимущество и недостатки работы в каждом из классов? В каких усилителях используется каждый из режимов?
- 42. Как выглядит формула для коэффициента усилителя, охваченного положительной и отрицательной обратной связью?
- 43. Для чего используют положительную и отрицательную обратную связь в усилителях? В чём преимущества и недостатки этих обратных связей?
- 44. Как вводятся в схему усилителя последовательные и параллельные обратные связи по току и напряжению?
- 45. Как выглядят схемы усилителей низкой частоты по схеме с общим эмиттером, общим коллектором, с эмиттерной и коллекторной стабилизацией? Каково назначение элементов схем?
- 46. Как выглядят схемы симметричного и несимметричного усилителей постоянного тока? Каково назначение элементов схем?
- 47. Как выглядят схемы одноактного и двухтактного усилителей мощности?
- 48. Как выглядит схема усилителя низкой частоты по схеме с общим истоком? Каково назначение элементов схемы?
- 49. Чему равен суммарный коэффициент усиления и сдвиг по фазе усилительного каскада?
- 50. По какой формуле определяют коэффициент гармоник?

- 51. В каком состоянии находятся транзисторы двухтактного усилителя мощности при положительном и отрицательном полупериоде входного сигнала?
- 52. Что такое операционный усилитель? Как он обозначается на схеме? Каково назначение его выводов? Что такое дифференциальный вход?
- 53. Какими свойствами обладает идеальный операционный усилитель?
- 54. Как выглядят схемы инвертирующего, неинвертирующего усилителей, сумматора, вычитателя, интегратора дифференциатора, компаратора, триггера Шмидта на базе операционного усилителя? Как выглядит формула для выходного напряжения этих схем?
- 55. Как выглядит структурная схема операционного усилителя? Каково назначение элементов схемы?
- 56. Каковы три условия самовозбуждения генератора? Что такое баланса амплитуд и фаз? Чему равна частота напряжения на выходе генератора?
- 57. Как выглядят схемы LC-генераторов по схеме с трансформаторной обратной связью, индуктивной и ёмкостной трёхочек? Каково назначение элементов схем?
- 58. Как выглядят схемы RC-генераторов по схеме с поворотом фазы в цепи обратной связи? Каково назначение элементов схем?
- 59. Как выглядят схемы RC-генераторов по схеме без поворота фазы в цепи обратной связи с мостом Вина и с двойным Т-обратным мостов? Каково назначение элементов схем?
- 60. Как выглядят схема мультивибратора? Каково назначение элементов схем?
- 61. Как выглядят амплитудно-частотные характеристики моста Вина и с двойного Тобразного мостов?
- 62. Как на схемах обознаются элементы НЕ, И, ИЛИ, И-НЕ, ИЛИ-НЕ? Как выглядят их таблицы истинности?
- 63. Как логические элементы реализуются на базе ДТЛ, ТТЛ, И2Л, ЭСЛ, n-МОП, КМОП базовых структур? В чем преимущества и недостатки этих структур?
- 64. Как определить сигнал на выходе логической схемы, зная сигналы на входе?
- 65. Как работают асинхронный и синхронный RS-, D, T, JK-триггеры? Как они обозначаются на схеме? В каких устройствах применяются? Как реализуются на базе логических элементов?
- 66. Как реализовать D и T-триггеры на базе JK-триггера? Как реализовать T-триггер на основе D-триггера?
- 67. Что такое шифратор, дешифратор, полусумматор, сумматор, мультиплексор, демультиплексор, счётчик, регистр? Как они обозначаются на схеме? На основе каких элементов они реализуются?
- 68. Как устроены ЦАП, параллельный, последовательный и интегрирующий АЦП? Каковы достоинства и недостатки разных схем АЦП?
- 69. Из каких узлов состоит ЭВМ? Каковы функции этих узлов?

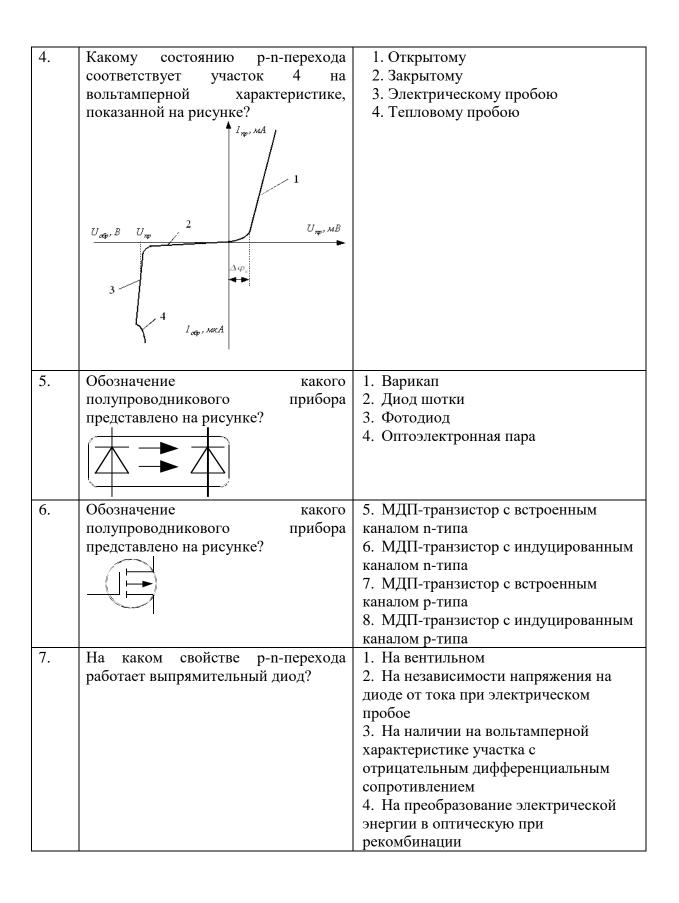
6.2.2. Примерные тестовые задания к экзамену

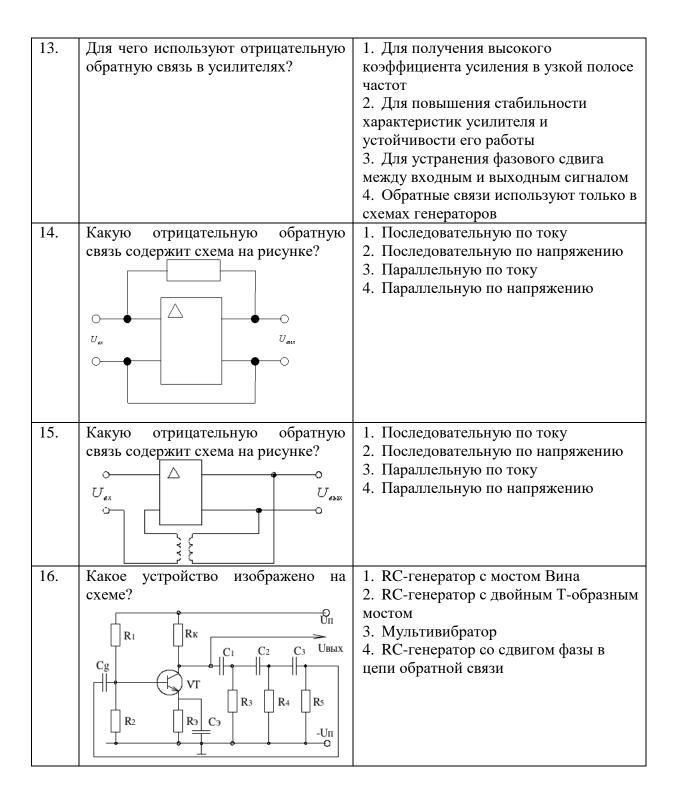
$N_{\underline{o}}$	Вопросы	Варианты ответов
п.п.		
1.	Какое из веществ относится к	1. Олово
	полупроводникам?	2. Железо
		3. Кремний
		4. Уран
2.	Полупроводник содержащий какую	1. Донорную
	примесь называют полупроводником	2. Акцепторную
	р-типа?	3. Электронную
		4. Дырочную


3.	Полупроводник содержащий какую примесь называют полупроводником n-типа?	1. Донорную 2. Акцепторную 3. Электронную 4. Дырочную
4.	Примесь элементов какой группы таблицы Менделеева обычно создаёт в полупроводнике избыток свободных электронов?	1. Второй 2. Третьей 3. Четвёртой 4. Пятой
5.	Примесь элементов какой группы таблицы Менделеева обычно создаёт в полупроводнике избыток дырок?	 Второй Третьей Четвёртой Пятой
6.	Обозначение какого прибора представлено на рисунке?	1. Биполярный транзистор p-n-p-типа 2. Биполярный транзистор n-p-n-типа 3. Полевой транзистор с затвором в виде p-n-перехода с каналом n-типа 4. Полевой транзистор с затвором в виде p-n-перехода с каналом p-типа
7.	Обозначение какого полупроводникового прибора представлено на рисунке?	1. МДП-транзистор с встроенным каналом п-типа 2. МДП-транзистор с индуцированным каналом п-типа 3. МДП-транзистор с встроенным каналом р-типа 4. МДП-транзистор с индуцированным каналом р-типа
8.	Обозначение какого прибора представлено на рисунке?	1. МДП-транзистор с встроенным каналом п-типа 2. МДП-транзистор с индуцированным каналом п-типа 3. МДП-транзистор с встроенным каналом р-типа 4. МДП-транзистор с индуцированным каналом р-типа
9.	Обозначение какого прибора представлено на рисунке?	1. МДП-транзистор с встроенным каналом п-типа 2. МДП-транзистор с индуцированным каналом п-типа 3. МДП-транзистор с встроенным каналом р-типа 4. МДП-транзистор с индуцированным каналом р-типа
10.	Обозначение какого полупроводникового прибора представлено на рисунке?	1. МДП-транзистор с встроенным каналом п-типа 2. МДП-транзистор с индуцированным каналом п-типа 3. МДП-транзистор с встроенным каналом р-типа 4. МДП-транзистор с индуцированным каналом р-типа


15.	Какие усилители обычно работают в классе D?	 Усилители напряжения низкой частоты и однотактные усилители мощности Двухтактные усилители мощности Узкополосные высокочастотные усилители Импульсные усилители
16.	По какой формуле определяют коэффициент усиления усилителя охваченного отрицательной обратной связью?	1. $K_{oc} = \frac{K}{1 + \beta K}$ 2. $K_{oc} = \frac{K}{1 - \beta K}$ 3. $K_{oc} = \frac{1 + \beta K}{1 - \beta K}$ 4. $K_{oc} = \frac{1 - \beta K}{1 + \beta K}$
17.	Для чего в схеме используются резисторы R611-R622? $R_{g_{2}}$	 Для термостабилизации Для выбора рабочей точки транзисторов В качестве элементов положительной обратной связи В качестве элементов отрицательной обратной связи
18.	При соединении трёх усилителей в каскадную схему, чем будет равен общий коэффициент усиления?	1. $K = K_1 K_2 K_3$ 2. $K = K_1 + K_2 + K_3$ 3. $K = (K_1 K_2 K_3)^2$ 4. $K = \frac{1}{K_1 + K_2 + K_3}$
19.	Каково преимущество логических интегральных схем серии ТТЛ по сравнению с КМОП?	 Низкая потребляемая мощность. Высокий коэффициент разветвления. Высокая помехоустойчивость. Высокое быстродействие.
20.	Обозначение какого триггера приведено на рисунке?	1. Синхронный RS-триггер. 2. Асинхронный RS-триггер. 3. Т-триггер. 4. D-триггер.

№	Вопросы	Варианты ответов
п.п.	Движением каких частиц обусловлена дырочная проводимость?	1. Свободных электронов 2. Валентных электронов 3. Положительных ионов 4. Отрицательных ионов
2.	Движением каких частиц обусловлена электронная проводимость?	1. Свободных электронов 2. Валентных электронов 3. Положительных ионов 4. Отрицательных ионов
3.	Чем обусловлено возникновение потенциального барьера в p-n-переходе?	 Полем ионов примесей Полем ионов чистого полупроводника Внешним электрическим полем Внешним магнитным полем
4.	Какие элементы обладают наибольшим удельным сопротивлением?	 Металлы Диэлектрики Полупроводники р-типа Чистые полупроводники
5.	Какому состоянию р-п-перехода соответствует участок 3 на вольтамперной характеристике, показанной на рисунке? $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1. Открытому 2. Закрытому 3. Электрическому пробою 4. Тепловому пробою
6.	Обозначение какого полупроводникового прибора представлено на рисунке?	 Варикап Диод Шотки Фотодиод Оптоэлектронная пара
7.	Обозначение какого прибора представлено на рисунке?	 Варикап Диод Шотки Фотодиод Оптоэлектронная пара




15.	Чему равен коэффициент сглаживания?	1. $K_{cen} = \frac{K_n^{c\phi}}{K_n^{\delta\phi}}$
		2. $K_{cen} = \frac{K_n^{c\phi}}{K_n^{\phi\phi}} + 1$ $K_n^{c\phi}$
		$3. K_{cen} = \frac{K_n^{c\phi}}{K_n^{\delta\phi}} - 1$
		4. $K_{czn} = \sqrt{\frac{K_n^{c\phi}}{K_n^{\delta\phi}}} + 1$
16.	Схема какого усилителя представлена на рисунке?	1. Усилителя низкой частоты на базе биполярного транзистора,
	→ -U _*	включенного по схеме с общим эмиттером, с коллекторной
	R_{κ}	стабилизацией.
	R ₁	2. Усилителя низкой частоты на базе
	C_{pl} VT U_{ext} R_{y}	биполярного транзистора, включенного по схеме с общим
		эмиттером, с эмиттерной
	<i>U</i> _a ,	стабилизацией. 3. Усилителя низкой частоты на базе
	R_2	биполярного транзистора,
		включенного по схеме с общим
		коллектором, с коллекторной стабилизацией.
		стаоилизациеи. 4. Усилителя низкой частоты на базе
		биполярного транзистора,
		включенного по схеме с общим
		коллектором, с эмиттерной стабилизацией.
17.	Чему равно напряжение на выходе схемы?	1. $U_{\text{Bbix}} = -\frac{1}{RC} \int U_{\text{Bx}}(t) dt$
	C	$2. \ \ U_{\text{\tiny BbIX}} = \frac{1}{RC} \int U_{\text{\tiny BX}}(t) dt$
	U_{BX} U_{BLIX}	3. $U_{\text{Bbix}} = -RC \frac{dU_{\text{Bx}}}{dt}$
	Ø ' <u>'</u>	$4. \ \ U_{\text{\tiny BbIX}} = RC \frac{dU_{\text{\tiny BX}}}{dt}$
18.	Какую функцию в схеме выполняет конденсатор Сэ?	 Элемент резонансного контура Элемент цепи положительной
	конденсатор Сэ?	 элемент цепи положительной обратной связи
	LK CK	3. Элемент цепочки
	R_1	термостабилизации 4. Элемент цепи выбора рабочей
	U _{BAX}	точки
	VI	
	R_2 $R_3 = C_3$	

No	Вопросы	Варианты ответов
п.п.		
1.	Как соотносятся ток диффузии и ток	1. $I_{\partial u\phi} = I_{\partial p}$
	дрейфа р-п-перехода при обратном его включении?	2. $I_{\partial u\phi} > I_{\partial p}$
	сто включении:	3. $I_{\partial u\phi} < I_{\partial p}$
		4. $I_{\partial u\phi} \ge I_{\partial p}$
2.	Что является основными носителями	1. Свободные электроны
	заряда в полупроводнике р-типа?	2. Дырки
		3. Анионы
		4. Катионы
3.	Что является основными носителями	1. Свободные электроны
	заряда в полупроводнике п-типа?	2. Дырки
		3. Анионы
		4. Катионы

8.	Структура какого транзистора представлена на рисунке?	5. Биполярного n-p-n 6. Полевого с затвором в виде p-n-перехода с каналом n-типа 7. Полевого с изолированным затвором с встроенным каналом p-типа 8. Полевого с изолированным затвором с индуцированным каналом p-типа
9.	Работу какого узла схемы источника питания характеризует коэффициент сглаживания?	 Трансформатора Выпрямителя Фильтра Стабилизатора напряжения
10.	Чему равен коэффициент стабилизации напряжения?	1. $K_{cm} = \frac{U_{6blx}^{2} / \Delta U_{6blx}}{U_{6slx}^{2} / \Delta U_{6slx}}$ 2. $K_{cm} = \frac{\sqrt{\Delta U_{6blx}} / \Delta U_{6slx}}{U_{6x} / \Delta U_{6x}}$ 3. $K_{cm} = \sqrt{\frac{U_{6blx}^{2} / \Delta U_{6blx}}{U_{6x}^{2} / \Delta U_{6x}}}$ 4. $K_{cm} = \sqrt{\frac{U_{6blx}^{2} / \Delta U_{6blx}}{U_{6x}^{2} / \Delta U_{6x}}}$
11.	Какую функцию выполняет на схеме транзистор VT1? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. Регулирующего элемента 2. На нём формируется опорное напряжение 3. Выполняет операцию сравнения 4. Формирует сигнал обратной связи
12.	Где выбирается рабочая точка на входной характеристике биполярного транзистора усилителя при работе в классе В?	 В середине линейного участка В начале линейного участка В точке 0 В отрицательной части

17.	Частотная характеристика какой схемы приведена на рисунке?	 Моста Уитстона Моста Вина Двойного Т-образного моста Моста Ларионова
18.	$\frac{1}{2\pi RC}$ Осуществите перевод двоичной	1. 1
	записи числа 011 в десятичную.	2. 2 3. 3 4. 4
19.	Какой из приведенных триггеров считается универсальным, так как на его основе могут быть выполнены другие триггеры?	 1. RS-триггер. 2. Т-триггер. 3. D-триггер. 4. JK-триггер.
20.	Каково преимущество логических интегральных схем серии ЭСЛ?	 Низкая потребляемая мощность. Высокий коэффициент разветвления. Высокая помехоустойчивость. Высокое быстродействие.

6.3. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

6.3.1. Критерии оценок промежуточной аттестации (экзамена)

Оценка			
«2»	Пороговый уровень освоения	Углубленный уровень освоения	Продвинутый уровень освоения
(неудовлетворительно)	«3»	«4»	«5»
	(удовлетворительно)	(хорошо)	(отлично)
Посещение менее	Посещение не менее	Посещение не менее	Посещение не менее
50 % лекционных,	60 % лекционных,	70 % лекционных,	85 % лекционных,
лабораторных	лабораторных	лабораторных	лабораторных
занятий	занятий	занятий	занятий
Студент не знает	Студент	Студент хорошо	Студент в полном
значительной части	поверхностно знает	знает материал,	объёме знает
материала, допускает	материал основных	грамотно и по	материал,
существенные	разделов и тем	существу излагает	грамотно и по
ошибки в ответах на	учебной	его, допуская	существу излагает
вопросы	дисциплины,	некоторые	его, не допуская
	допускает	неточности в ответе	существенных
	неточности в ответе	на вопрос.	неточностей в ответе
	на вопрос		на вопрос
Не умеет находить	Иногда находит	Уверенно находит	Безошибочно

Оценка			
«2»	Пороговый уровень освоения	Углубленный уровень освоения	Продвинутый уровень освоения
(неудовлетворительно)	«3»	«4»	«5»
	(удовлетворительно)	(хорошо)	(отлично)
решения большинства	решения	решения	находит
предусмотренных	предусмотренных	предусмотренных	решения
программой обучения	программой	программой обучения	предусмотренных
заданий	обучения заданий	заданий	программой
			обучения заданий
Большинство	Предусмотренные	Предусмотренные	Предусмотренные
предусмотренных	программой	программой обучения	программой
программой обучения	обучения задания	задания успешно	обучения задания
заданий не выполнено	выполнены	выполнены	успешно выполнены
	удовлетворительно		

Примерная шкала оценивания знаний при тестовой форме проведения экзамена:

Количество правильных ответов, %	Оценка
0-50	Неудовлетворительно
51-65	Удовлетворительно
66-85	Хорошо
86-100	Отлично

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1.1 Основная литература

- 1. Бобылев, Ю.Н. Физические основы электроники: учеб. пособие Электрон. дан. Москва: Горная книга, 2005. 290 с. Электронный ресурс https://e.lanbook.com/book/3486
- 2. Наумкина, Л.Г. Электроника: учеб. пособие Электрон. дан. Москва : Горная книга, 2007. 331 с. Электронный ресурс https://e.lanbook.com/book/3504.
- 3. Черемушкин, А.А. Электроника : учеб. пособие : учеб. пособие Электрон. дан. Кемерово : КузГТУ имени Т.Ф. Горбачева, 2012. 205 с. Электронный ресурс https://e.lanbook.com/book/6678.
- 4. Смирнов, Ю.А. Физические основы электроники [Электронный ресурс] : учеб. пособие / Ю.А. Смирнов, С.В. Соколов, Е.В. Титов. Электрон. дан. Санкт-Петербург : Лань, 2013. 560 с. Электронный ресурс https://e.lanbook.com/book/5856

7.1.2. Дополнительная литература

- 1. Физические основы электроники. Сборник задач и примеры их решения: Учебнометодическое пособие/ Аристов А.В., Петрович В.П. Томск: Изд-во Томского политех. университета, 2015. 100 с. Электронный ресурс http://znanium.com/catalog.php?bookinfo=672993
- 2. Опадчий, Ю. Ф. Аналоговая и цифровая электроника [Текст] : полный курс : учеб. для вузов / Ю. Ф. Опадчий, О. П. Глудкин, А. И. Гуров ; под ред. О. П. Глудкина. М. : Горячая линия-Телеком, 2003. 768 с. : ил. 19 экземпляров. Печатный экземпляр

7.1.3. Учебно-методическое обеспечение

- 1. Электроника : учеб. пособие / О.М. Большунова. СПб. : Горн. ун-т, 2013. 81 с. Электронный ресурс
- http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=374&task=set_static_req&b ns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=%2D745291<.>
- 2. Электроника : лаб. практикум / С. В. Стороженко, О. М. Большунова, А. А. Коржев. СПб. : Горн. Ун-т, 2008. 74, Электронный ресурс

http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=374&task=set_static_req&b_ns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=%D0%90%2087517%2F%D0%A1%2082%2D26758308_7<.>

3. Электротехника и электроника [Электронный ресурс] : учебное пособие / С. В. Стороженко. - СПб. : Горн. ун-т, 2013 - .Ч. 2 : Электроника. - 100 с. Электронный ресурс http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=374&task=set_static_req&b <a href="mailto:ns-req-ex-ns-req-

7.2. Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Европейская цифровая библиотека Europeana: http://www.europeana.eu/portal
- 2. Информационно-издательский центр по геологии и недропользованию Министерства природных ресурсов и экологии Российской Федерации ООО "ГЕОИНФОРММАРК"-http://www.geoinform.ru/
 - 3. Информационно-аналитический центр «Минерал» http://www.mineral.ru/
- 4. КонсультантПлюс: справочно поисковая система [Электронный ресурс]. www.consultant.ru/.
 - 5. Мировая цифровая библиотека: http://wdl.org/ru
 - 6. Научная электронная библиотека «Scopus» https://www.scopus.com
 - 7. Научная электронная библиотека ScienceDirect: http://www.sciencedirect.com
 - 8. Научная электронная библиотека «eLIBRARY»: https://elibrary.ru/
 - 9. Поисковые системы Yandex, Google, Rambler, Yahoo и др.
- 10. Система ГАРАНТ: электронный периодический справочник [Электронный ресурс] www.garant.ru/.
- 11. Термические константы веществ. Электронная база данных, http://www.chem.msu.su/cgibin/tkv.pl
- 12. Электронно-библиотечная система издательского центра «Лань»: https://e.lanbook.com/books.
- 13. Электронная библиотека Российской Государственной Библиотеки (РГБ): http://elibrary.rsl.ru
 - 14. Электронная библиотека учебников: http://studentam.net
 - 15. Электронно-библиотечная система «ЭБС ЮРАЙТ» www.biblio-online.ru.
- 16. Электронная библиотечная система «Национальный цифровой ресурс «Руконт»». http://rucont.ru/
 - 17. Электронно-библиотечная система http://www.sciteclibrary.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Материально-техническое оснащение аудиторий

Специализированные аудитории, используемые при проведении занятий лекционного типа, практических занятий, оснащены мультимедийными проекторами и комплектом аппаратуры, позволяющей демонстрировать текстовые и графические материалы.

Аудитории для проведения лекционных занятий (Учебный центр №2).

Аудитория оснащена следующим оборудованием: 26 посадочных мест, Стол $210\times60\times72$ — 13 шт, Стул ИСО — 37 шт, Доска под фломастер 100×200 — 1 шт, Стол преподавателя с трибуной $160\times55\times72$ — 1 шт, Рамка 1190×890 — 8 шт.

Аудитории для проведения лабораторных и практических занятий (Учебный центр №2).

Практические занятия выполняются в компьютерном классе кафедры.

Аудитория оснащена следующим оборудованием: 12 посадочных мест. Блок системный RAMEC GALE AL с монитором BenQ GL2450 (тип 1) - 13 шт. (возможность подключения к сети «Интернет»), стол - 15 шт., стул - 21 шт., доска маркерная - 1 шт., принтер Xerox Phaser 4600DN - 1 шт., плакат в рамке - 10 шт.

Лаборатории оснащены электронным оборудованием, средствами измерений и лабораторными установками, необходимыми для выполнения лабораторных работ по дисциплине «Физические основы электроники».

Мебель лабораторная:

столы -3 шт.; стулья -30 шт.;

Оборудование и приборы:

комплект оборудования лабораторного "Электронные устройства автоматики" - 6 шт.; Измерительный комплекс MS-9150-2 шт.

8.2. Помещения для самостоятельной работы:

Аудитория оснащена следующим оборудованием:

14 посадочных мест

Принтер Xerox Phaser 4600DN - 1 шт., Блок системный RAMEC GALE AL с монитором BenQ GL2450 (тип 1) - 15 шт. (возможность подключения к сети «Интернет»), стол - 17 шт., стул - 27 шт., доска маркерная - 1 шт., плакат в рамке - 31шт.

В учебном процессе используется комплект демонстрационных стендовых материалов по курсу управления взаимосвязанными электромеханическими комплексами.

8.3. Помещения для хранения и профилактического обслуживания оборудования:

1. Центр новых информационных технологий и средств обучения:

Оснащенность: персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -4 шт., сетевой накопитель -1 шт., источник бесперебойного питания -2 шт., телевизор плазменный Panasonic -1 шт., точка Wi-Fi -1 шт., паяльная станция -2 шт., дрель -5 шт., перфоратор -3 шт., набор инструмента -4 шт., тестер компьютерной сети -3 шт., баллон со сжатым газом -1 шт., паста теплопроводная -1 шт., пылесос -1 шт., радиостанция -2 шт., стол -4 шт., тумба на колесиках -1 шт., подставка на колесиках -1 шт., шкаф -5 шт., кресло -2 шт., лестница Alve -1 шт.

2. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -5 шт., стул -2 шт., кресло -2 шт., шкаф -2 шт., персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -2 шт., МФУ -1 шт., тестер компьютерной сети -1 шт., балон со сжатым газом -1 шт., шуруповерт -1 шт.

3. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -2 шт., стуля -4 шт., кресло -1 шт., шкаф -2 шт., персональный компьютер -1 шт. (доступ к сети «Интернет»), веб-камера Logitech HD C510 -1 шт., колонки Logitech -1 шт., тестер компьютерной сети -1 шт., дрель -1 шт., телефон -1 шт., набор ручных инструментов -1 шт.

8.4. Лицензионное программное обеспечение

Місгоsoft Windows 7 Professional: ГК № 1464-12/10 от 15.12.10 «На поставку компьютерного оборудования» ГК № 959-09/10 от 22.09.10 «На поставку компьютерной техники» ГК № 447-06/11 от 06.06.11 «На поставку оборудования» ГК № 984-12/11 от 14.12.11 «На поставку оборудования" Договор № 1105-12/11 от 28.12.2011 «На поставку компьютерного оборудования», Договор №

1106-12/11 от 28.12.2011 «На поставку компьютерного оборудования» ГК № 671-08/12 от 20.08.2012 «На поставку продукции», MicrosoftOpenLicense 60799400 от 20.08.2012, MicrosoftOpenLicense 48358058 от 11.04.2011, MicrosoftOpenLicense 49487710 от 20.12.2011, MicrosoftOpenLicense 49379550 от 29.11.2011, MicrosoftOffice 2010 Standard: MicrosoftOpenLicense 60799400 от 20.08.2012, MicrosoftOpenLicense 60853086 от 31.08.2012 Kasperskyantivirus 6.0.4.142.