ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ

СОГЛАСОВАНО

Руководитель программы аспирантуры

профессор С.М. Судариков

УТВЕРЖДАЮ

Декан геологоразведочного факультета доцент Д.Л. Устюгов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

СОВРЕМЕННЫЕ МЕТОДЫ ГЕОФИЛЬТРАЦИОННЫХ ИС-СЛЕДОВАНИЙ

Подготовка научных и научно-педагогических кадров в аспирантуре

Область науки:

1. Естественные науки

Группа научных специальностей:

1.6. Науки о Земле и окружающей среде

Научная специальность:

1.6.6. Гидрогеология

Направленность (профиль):

Гидрогеология

Отрасли науки:

Геолого-минералогические

Технические

Форма освоения программы

Очная

аспирантуры:

Срок освоения программы

3 года

аспирантуры:

Составитель:

Д. г.-м. н., профессор, Судариков С.М.

Санкт-Петербург

Рабочая программа дисциплины «Современные методы геофильтрационных исследований» составлена в соответствии:

- с требованиями Приказа Министерства науки и высшего образования Российской Федерации от 20.10.2021 г. № 951 «Об утверждении федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов» и Постановления Правительства Российской Федерации от 30.11.2021 г. № 2122 «Об утверждении Положения о подготовке научных и научно-педагогических кадров в аспирантуре»;

– на основании учебного плана подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 1.6.6. Гидрогеология, направленности (профилю) «Гидрогеология».

Составитель:

д. г.-м. н., проф. С.М. Судариков

Рабочая программа рассмотрена и одобрена на заседании кафедры гидрогеологии и инженерной геологии «11» апреля 2022 г., протокол № 10.

Рабочая программа согласована:

Декан факультета аспирантуры и докторантуры

Заведующий кафедрой гидрогеологии и инженерной геологии

к.т.н. В. В. Васильев

к.г.-м.н., доц. Д. Л. Устюгов

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель изучения дисциплины — закрепление мировоззрения аспирантов о взаимосвязи и обусловленности природных гидрогеологических процессов; получение ими знаний, необходимых для обоснования и ведения современных геофильтрационных исследований в гидрогеологии; формирование знаний по проведению экспертных оценок различных природных и техногенных ситуаций; приобретение навыков планирования работ на разных стадиях исследований в гидрогеологических условиях различных регионов; подготовка аспирантов к научной и научно-исследовательской деятельности; подготовка аспирантов к сдаче кандидатского экзамена по специальной дисциплине.

Основные задачи дисциплины:

- представить основные теоретические подходы к пониманию методов геофильтрационных исследований;
- способствовать пониманию аспирантами законов, управляющих распределением подземных вод в пространстве и времени, определяющих взаимосвязь подземной гидросферы с другими оболочками Земли;
- способствовать овладению аспирантами умением применять знания об особенностях геофильтрационных исследований основных типов крупных скоплений и месторождений пресных и минеральных (лечебных, промышленных и термальных) вод на территории России и земного шара в целом, обеспеченности этими водами различных районов и перспективами их использования и охраны.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ПРОГРАММЫ АСПИРАНТУРЫ

Дисциплина «Современные методы геофильтрационных исследований» входит в составляющую «Дисциплины (модули), в том числе элективные, факультативные дисциплины (модули), дисциплины, направленные на подготовку к сдаче кандидатских экзаменов» образовательного компонента программы подготовки научных и научнопедагогических кадров в аспирантуре по научной специальности 1.6.6. Гидрогеология, направленности (профилю) «Гидрогеология» и изучается в 4 семестре.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ТРЕБОВАНИЯ К НИМ

В результате изучения дисциплины аспирант должен:

знать: теоретические и инновационные подходы к пониманию методов геофильтрационных исследований; современные направления геофильтрационных исследований различных гидрогеологических структур;

уметь: учитывать тенденции и направления развития инновационных технологий гидрогеологических изысканий и способность их адаптации к различным горно-геологическим и техническим условиям; выполнять комплексный анализ и интерпретацию опытнофильтрационных и гидрохимических исследований в различных горно-геологических условиях; осуществлять **геофильтрационные исследования** гидрогеологических комплексов и систем и их компонентов;

владеть навыками: использования геофильтрационных исследований в гидрогеологических исследованиях; накопления, обработки, анализа и синтеза полевой и лабораторной гидрогеологической информации; использования современных компьютерных программ; организации и проведения аудиторного занятия в соответствии с направлением своего научного исследования;

Уровень владения аспирантом знаниями, умениями и навыками по итогам освоения дисциплины определяется на основании результатов промежуточной аттестации в форме дифференцированного зачета в 4 семестре.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины «Современные методы геофильтрационных исследований» с учетом промежуточной аттестации по дисциплине составляет 72 академических часа, 1 зачётная единица.

Вид учебной работы	Всего ак. часов	Ак. часы по семестрам 4	
Аудиторные занятия, в том числе:	36	36	
Лекции	4	4	
Практические занятия	8	8	
Самостоятельная работа аспирантов, в том числе	24	24	
Самостоятельное изучение отдельных разделов дисциплины. Подготовка устных сообщений	12	12	
Освоение пакетов специализированных прикладных программ	12	12	
Трудоемкость дисциплины	36	36	
Вид промежуточной аттестации – дифференцированный зачет (ДЗ)	ДЗ (36)	ДЗ (36)	
Общая трудоемкость дисциплины с учетом про- межуточной аттестации			
ак. час.	72	72	
зач. ед.	2	2	

4.2. Содержание дисциплины

Учебным планом предусмотрены: лекции, практические занятия и самостоятельная работа.

4.2.1. Разделы дисциплины и виды занятий

		Виды занятий				
№ п/п	Наименование разделов	Всего ак. часов	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа
1.	Математические основы теории движения подземных вод	12	2	2	-	8
2.	Плановая фильтрация, фильтрация в многопластовых системах	13	1	4	-	8
3.	Численные методы решения дифференциальных уравнений фильтрации	11	1	2	ı	8
	Итого:	36	4	8	-	24

4.2.2. Содержание разделов дисциплины

Дисциплина включает 3 темы, содержание которых направлено на изучение математических основ теории движения подземных вод, плановой фильтраци, фильтрации в многопластовых системах и численных методов решения дифференциальных уравнений фильтрации.

Тема 1. Математические основы теории движения подземных вод

Задачи типизации и схематизации. Виды потоков и их гидродинамические особенности. Принципы схематизации, последовательность и основные критерии. Построение расчетной схемы. Основные предпосылки и исходные уравнения движения. Уравнение неразрывности. Дифференциальные уравнения жесткого и упругого режима фильтрации. Дифференциальные уравнения фильтрации грунтовых вод и способы их линеаризации. Дифференциальные уравнения движения подземных вод в слоистых толщах с перетеканием, в неоднородных и анизотропных пластах и других условиях. Математическая постановка задачи и условия ее однозначного решения. Свойства дифференциальных уравнений и методы их решения. Прямые и обратные задачи фильтрации.

Практические занятия.

Структура фильтрационных потоков. Построение гидродинамических сеток

Схематизация гидрогеологических условий и построение расчетных схем

Схематизация и типизация гидрогеологических условий. Построение расчетных схем.

Самостоятельная работа.

Исследование динамики потоков. Основные методы и цели.

Одномерная плоскопараллельная стационарная фильтрация без инфильтрационного питания.

Одномерная плоскопараллельная стационарная фильтрация с инфильтрационным питанием.

Тема 2. Плановая фильтрация, фильтрация в многопластовых системах

Математическая постановка и основные типы расчетных схем, методы их исследования. Основные уравнения стационарной линейной фильтрации в однородных и неоднородных пластах при наличии и отсутствии вертикального водообмена. Изучение гидродинамики естественных потоков. Особенности фильтрации в зоне действия скважин. Основные расчетные схемы. Понятие о точечных и линейных стоках. Исходные математические модели для радиальной, планово-радиальной и пространственной фильтрации. Общая постановка задач. Основные уравнения радиальной стационарной фильтрации для одиночных скважин (задача Дюпюи). Планово-радиальная стационарная фильтрация (водоприток к системе взаимодействующих скважин).

Особенности фильтрации в многопластовых гидравлически связанных системах. Уравнения нестационарной фильтрации к скважинам в двухпластовой системе, ее диагностические особенности. Построение расчетных зависимостей методом фильтрационных сопротивлений для сложных случаев. Учет изменения числа, дебита и времени ввода скважин в работу. Учет начальных условий и естественного потока. Упорядоченные системы скважин. Метод обобщенных систем скважин.

Практические занятия.

Водоприток к скважине в условиях стационарной фильтрации.

Основные расчетные схемы стационарной радиальной фильтрации и их решения. Взаимодействующие скважины. Кольцевые водозаборы. Учет несовершенства скважин по степени вскрытия пласта.

Подпор подземных вод при повышении уровня в реке. Стадии формирования подпора.

Метод фильтрационных сопротивлений

Самостоятельная работа.

Нестационарная фильтрация. Водоприток к одиночной скважине.

Основные расчетные схемы нестационарной фильтрации. Взаимодействующие скважины. Принцип зеркального отображения скважин относительно границы. Сравнение влияния открытых и закрытых границ.

Расчет фильтрации на основе решения Хантуша

Тема 3. Численные методы решения дифференциальных уравнений фильтра- ции

Понятие о методах сеток. Вывод уравнения в конечных разностях и его применение к изучению нестационарной фильтрации. Решение уравнения в конечных разностях по явной и неявной схемам. Моделирование как метод изучения движения подземных вод.

Практические занятия.

Численные методы решения дифференциальных уравнений фильтрации.

Методы интерпретации откачек.

Временное прослеживание понижений.

Самостоятельная работа.

Площадное прослеживание. Комбинированное прослеживание.

Оценка параметров по восстановлению уровня (метод Хорнера).

Метод подбора. Метод эталонной кривой.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИНЫ

При изучении дисциплины «Современные методы геофильтрационных исследований» применяются:

Лекции, которые являются одним из важнейших видов учебных занятий и составляют основу теоретической подготовки аспирантов.

Цели лекционных занятий:

- дать систематизированные научные знания по дисциплине, акцентировать внимание на наиболее сложных вопросах дисциплины;
- стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Практические занятия, цель которых углубить и закрепить знания, полученные на лекциях и в процессе самостоятельной работы аспиранта. На практических занятиях аспиранты делают краткие устные сообщения о результатах самостоятельной работы с последующим обсуждением при участии преподавателя.

Консультации (текущая консультация, накануне дифференцированного зачета) является одной из форм руководства учебной работой аспирантов и оказания им помощи в самостоятельном изучении материала дисциплины, в ликвидации имеющихся пробелов в знаниях, задолженностей по текущим занятиям.

Текущие консультации проводятся преподавателем, ведущим занятия в учебной группе, и носят как индивидуальный, так и групповой характер.

Самостоятельная работа аспирантов направлена на углубление и закрепление знаний, полученных на лекциях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим практическим занятиям и промежуточной аттестации в форме кандидатского экзамена.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

6.1. Проведение текущего контроля успеваемости

Текущий контроль используется для оценки хода и уровня достижения аспирантом планируемых результатов освоения дисциплины.

Текущий контроль осуществляется в ходе учебного процесса, консультирования аспирантов и проверки выполнения самостоятельной работы.

Основными формами текущего контроля по дисциплине являются:

- устный опрос аспиранта по контрольным вопросам (устный ответ);
- устное сообщение аспиранта о результатах выполненной самостоятельной работы (устный ответ).

6.2. Примерный перечень вопросов для текущего контроля успеваемости Тема 1. Математические основы теории движения подземных вод

- 1. Виды потоков и их гидродинамические особенности.
- 2. Принципы схематизации, последовательность и основные критерии.
- 3. Основные предпосылки и исходные уравнения движения подземных вод.
- 4. Дифференциальные уравнения жесткого и упругого режима фильтрации.
- 5. Дифференциальные уравнения нестационарной фильтрации грунтовых вод и способы их линеаризации.
- 6. Дифференциальные уравнения движения подземных вод в слоистых толщах с перетеканием
- 7. Прямые и обратные задачи фильтрации

Тема 2. Плановая фильтрация, фильтрация в многопластовых системах

- 1. Перечислите основные типы расчетных схем плановой фильтрации.
- 2. Приведите примеры уравнения стационарной линейной фильтрации в однородных и неоднородных пластах.
 - 3. Особенности фильтрации в зоне действия скважин.
- 4. Перечислите исходные математические модели для радиальной, плановорадиальной и пространственной фильтрации.
- 5. Уравнения нестационарной фильтрации к скважинам в двухпластовой системе, ее диагностические особенности?
 - 6. Построение расчетных зависимостей методом фильтрационных сопротивлений?
 - 7. Метод обобщенных систем скважин?

Тема 3. Численные методы решения дифференциальных уравнений фильтра- ции

- 1. Сформулируйте понятие о методах сеток.
- 2. Вывод уравнения в конечных разностях и его применение к изучению нестационарной фильтрации.
 - 3. Решение уравнения в конечных разностях по явной и неявной схемам?
 - 4. Моделирование как метод изучения движения подземных вод.
 - 5. Численные методы решения дифференциальных уравнений фильтрации.
 - 6. Временное прослеживание понижений?
 - 7. Методы интерпретации откачек.

•

6.3. Критерии оценивания устных ответов аспирантов

Развернутый ответ аспиранта должен представлять собой связное, логически последовательное сообщение на определенную тему, показывать его умение применять определения, правила в конкретных случаях.

При оценке устного ответа аспиранта необходимо руководствоваться следующими критериями:

- 1) полнота и правильность ответа;
- 2) степень осознанности, понимания изучаемого материала;
- 3) знание терминологии и правильное ее использование;
- 4) соответствие требованиям рабочей программы по дисциплине.

Оценка «зачтено» за устный ответ ставится, если аспирант:

- 1) ориентируется в излагаемом материале, владеет базовой терминологией в объеме, предусмотренном рабочей программой дисциплины;
- 2) обнаруживает понимание материала, может обосновать свои суждения, подкрепляет теоретические положения примерами;
- 3) умеет структурировать содержание ответа в соответствии с поставленным вопросом;
- 4) не допускает (или допускает немногочисленные негрубые) ошибки при ответе; способен исправить допущенные им ошибки при помощи уточняющих вопросов преподавателя.

Оценка «неудовлетворительно» / «не зачтено». Материал излагается непоследовательно, сбивчиво, не представляет определенной системы знаний по дисциплине. Не раскрываются причинно-следственные связи между явлениями и событиями. Не проводится анализ. Выводы отсутствуют. Ответы на дополнительные вопросы отсутствуют. Имеются заметные нарушения норм литературной речи.

6.4 Порядок проведения дифференцированного зачета

Дифференцированный зачет проводится путем написания обучающимися самостоятельных рефератов, которые затем проверяются преподавателем с выставлением дифференцированных оценок. Реферат состоит из письменного выполнения следующего задания:

«Опишите характерные черты конкретной гидрогеологической модели (по выбору преподавателя, желательно, с учетом темы диссертационной работы) и предлагаемых методов моделирования гидрогеодинамических, гидрогеохимических, гидрогеотермических особенностей данной территории».

Обучающиеся пишут реферат в произвольной форме, реферат в электронном виде и на бумажном носителе хранится на кафедре ГиГ.

6.5. Критерии и процедура оценивания результатов дифференцированного зачета

Оценки за реферат выставляются, исходя из следующих критериев:

- **«отлично»** (5): если обучающийся глубоко и прочно усвоил весь программный материал лекций и демонстрирует это в эссе, исчерпывающе, последовательно, грамотно и логически стройно его излагает, использует обширный материал разнообразных источников, излагает свою позицию, хорошо ее объясняя и обосновывая;
- «**хорошо**» (4): если обучающийся твердо знает программный материал, не допускает существенных неточностей в его изложении, использует ограниченный круг источников, вместо своей позиции излагает одну из стандартных, не подкрепляя ее хорошо подобранными обоснованиями;
- **«удовлетворительно»** (3): если обучающийся поверхностно усвоил основной материал лекций, не знает деталей, допускает неточности, привлекает мало материала из источников, пользуясь, в основном, стандартными учебниками и формулировками;

— **«неудовлетворительно» (2)**: если обучающийся не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет или, по существу, не выполняет задания реферата.

Оценки по результатам проверки эссе объявляются обучающимся и заносятся в зачетную ведомость.

7. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ И РЕСУРСОВ СЕТИ «ИНТЕРНЕТ»

7.1. Основная литература

- 1. Мироненко В. А. Динамика подземных вод. 4-е издание. М.: Изд. МГГУ, 2005, 519 с.
- 2. Мироненко М. В. Особенности термодинамического моделирования некоторых водосодержащих систем // Геологическая эволюция и самоорганизация системы вода—порода / Под ред. С. Л. Шварцсва. Новосибирск, 2005. Т. ЕС. 175—180.
- 3. Румынии В. Г. Теория и методы изучения загрязнения подземных вод: Учебник для вузов. СПб.: Наука, 2020. 559 с.
- 4. Мироненко В. А., Румынии В. Г., Боревский Б. В., Ершов Г. Е. Опытномиграционные работы на месторождениях питьевых вод (методические рекомендации). М.: ГИДЭК. 1998.
 - 5. Калинин Э.В. Инженерно-геологические расчеты и моделирование. М., МГУ, 2006.
- 6. Семячков А.И., Почегун В.А., Хисматулин Д.Р. Статистические методы в гидрогеологии, инженерной геологии и геоэкологии. Екатеринбург, УГГУ, 2005.

7.2. Дополнительная литература

- 7. Мироненко В.А., Шестаков В.М. Теория и методы интерпретации опытнофильтрационных работ. М.: Недра, 1978. 325 с.
- 8. Шестаков В.М. Гидрогеодинамика. 3-е издание. М., Изд. МГУ, 1995.7. Гидрогеология СССР. Сводный том, вып. 3. Ред. *Л.С. Язвин.* М.: Недра, 1977.

7.3. Учебно-методическое обеспечение самостоятельной работы аспиранта

- Методические указания для самостоятельной работы аспирантов;
- Методические указания по практическим занятиям.

7.4. Ресурсы сети «Интернет»

- 1. Информационная справочная система «Консультант плюс».
- 2. Библиотека ГОСТов www.gostrf.com.
- 3. Сайт Российской государственной библиотеки. http://www.rsl.ru/
- 4. Сайт Государственной публичной научно-технической библиотеки России. http://www.gpntb.ru/
 - 5. Информационный сайт о состоянии недр РФ http://www.geomonitoring.ru/
- 6. Информационные ресурсы Всероссийского научно-исследовательского геологический института им. А.П. Карпинского http://www.vsegei.ru/ru/info/
 - 7. Каталог образовательных интернет ресурсов http://www.edu.ru/modules.php
- 8. Электронные библиотеки: http://www.pravoteka.ru/, http://www.zodchii.ws/, http://www.tehlit.ru/.
- 9. Специализированный портал по информационно-коммуникационным технологиям в образовании http://www.ict.edu.ru

7.5. Электронно-библиотечные системы:

- -ЭБС издательства «Лань» https://e.lanbook.com/
- -ЭБС издательства «Юрайт» https://biblio-online.ru/
- -ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/
- -9EC «ZNANIUM.COM» https://znanium.com
- -3EC «IPRbooks» https://iprbookshop.ru
- -ЭБС «Elibrary» https://elibrary.ru
- -Автоматизированная информационно-библиотечная система «Mark -SQL» https://informsystema.ru
 - -Система автоматизации библиотек «ИРБИС 64» https://elnit.org

7.6. Информационные справочные системы:

- 1. Система ГАРАНТ: информационный правовой портал [Электронный ресурс]. Электр.дан. http://www.garant.ru/
- 2. Консультант Плюс: справочно поисковая система [Электронный ресурс]. Электр.дан. www.consultant.ru/
- 3. OOO «Современные медиа-технологии в образовании и культуре». http://www.informio.ru/.
- 4.Программное обеспечение Норма CS «Горное дело и полезные ископаемые» https://softmap.ru/normacs/normacs-gornoe-delo-i-poleznye-iskopaemye/
- 5.Информационно-справочная система «Техэксперт: Базовые нормативные документы» http://www.cntd.ru/.
- 6.Программное обеспечение «База знаний: гидрогеология, инженерная геология и геоэкология» http://www.geoinfo.ru

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Аудитории для проведения лекционных занятий, консультаций, текущего контроля и промежуточной аттестации

Аудитория для проведения лекционных занятий: 69 посадочных мест, Стул -70 шт., стол -21 шт., доска маркерная -2 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.

Аудитория для самостоятельной работы, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: 13 посадочных мест, Стул -25 шт., стол -2 шт., стол компьютерный -13 шт., шкаф -2 шт., доска аудиторная маркерная -1 шт., АРМ учебное ПК (монитор + системный блок) -14 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.

8.2. Помещения для самостоятельной работы

1. Оснащенность помещения для самостоятельной работы: 13 посадочных мест. Стул -25 шт., стол -2 шт., стол компьютерный -13 шт., шкаф -2 шт., доска аудиторная маркерная -1 шт., APM учебное ПК (монитор + системный блок) -14 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.

2. Оснащенность помещения для самостоятельной работы: 17 посадочных мест. Доска для письма маркером – 1 шт., рабочие места студентов, оборудованные ПК с доступом в сеть университета – 17 шт., мультимедийный проектор – 1 шт., АРМ преподавателя для работы с мультимедиа – 1 шт. (системный блок, мониторы – 2 шт.), стол – 18 шт., стул – 18 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.

8.3. Помещения для хранения и профилактического обслуживания оборудования

1. Центр новых информационных технологий и средств обучения:

Оснащенность: персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -4 шт., сетевой накопитель -1 шт., источник бесперебойного питания -2 шт., телевизор плазменный Panasonic -1 шт., точка Wi-Fi -1 шт., паяльная станция -2 шт., дрель -5 шт., перфоратор -3 шт., набор инструмента -4 шт., тестер компьютерной сети -3 шт., баллон со сжатым газом -1 шт., паста теплопроводная -1 шт., пылесос -1 шт., радиостанция -2 шт., стол -4 шт., тумба на колесиках -1 шт., подставка на колесиках -1 шт., шкаф -5 шт., кресло -2 шт., лестница Alve -1 шт.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.

2. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -5 шт., стул -2 шт., кресло -2 шт., шкаф -2 шт., персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -2 шт., МФУ -1 шт., тестер компьютерной сети -1 шт., баллон со сжатым газом -1 шт., шуруповерт -1 шт.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.

3. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -2 шт., стулья -4 шт., кресло -1 шт., шкаф -2 шт., персональный компьютер -1 шт. (доступ к сети «Интернет»), веб-камера Logitech HD C510 -1 шт., колонки Logitech -1 шт., тестер компьютерной сети -1 шт., дрель -1 шт., телефон -1 шт., набор ручных инструментов -1 шт.

Перечень лицензионного программного обеспечения:

Microsoft Windows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

Microsoft Office Standard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение Kaspersky Endpoint Security срок полезного использования – 17.12.21 - 17.12.22.