ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ

СОГЛАСОВАНО

Руководитель программы аспирантуры доцент К.Г. Карапетян

УТВЕРЖДАЮ

Декан факультета переработки минерального сырья профессор П.А. Петров

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Подготовка научных и научно-педагогических кадров в аспирантуре

Область науки: 2. Технические науки

Группа научных специальностей: 2.6. Химические технологии, науки о

материалах, металлургия

Научная специальность: 2.6.7. Технология неорганических веществ

Отрасли науки: Технические

Форма освоения программы

аспирантуры:

Очная

Срок освоения программы

аспирантуры:

4 года

Составитель: д.т.н., проф. Алексеев А.И.

Рабочая программа дисциплины «Технология неорганических веществ» составлена в соответствии:

— с требованиями Приказа Министерства науки и высшего образования Российской Федерации от 20.10.2021 г. № 951 «Об утверждении федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов» и Постановления Правительства Российской Федерации от 30.11.2021 г. № 2122 «Об утверждении Положения о подготовке научных и научно-педагогических кадров в аспирантуре»;

– на основании учебного плана подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 2.6.7. Технология неорганических веществ.

Составитель:

A .

д.т.н., проф.

А.И. Алексеев

Рабочая программа рассмотрена и одобрена на заседании кафедры химических технологий и переработки энергоносителей «01» сентября 2022 г., протокол № 1.

Рабочая программа согласована:

Декан факультета аспирантуры и докторантуры

к.т.н.

В.В. Васильев

Заведующий кафедрой химических технологий и переработки энергоносителей

д.т.н., доцент

К.Г. Карапетян

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель изучения дисциплины — формирование и развитие у аспирантов знаний, умений и навыков, позволяющих осуществлять планирование и проведение научных исследований по теоретическим и прикладным основам неорганической технологии; изучение современного состояния и перспектив развития существующей отрасли науки и производства; развить умения давать общую и детальную характеристику производства различных неорганических продуктов и уметь показать проблемы технологического плана с решением социально-экономических задач.

Основные задачи дисциплины:

- формирование знаний, навыков и умений в области теоретических и экспериментальных исследований неорганического сырья, позволяющие выбирать и обосновывать рациональную технологическую схему производства продукта, оценивать экономическую и технологическую эффективность производства;
- изучение основных принципов организации химического производства, его структуры, а также методов оптимизации химико – технологических процессов с применением эмпирических и физико-химических моделей;
- освоение методов выполнения материальных, тепловых и конструктивных расчетов синтеза различных соединений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ПРОГРАММЫ АСПИРАНТУРЫ

Дисциплина «Технология неорганических веществ» направлена на подготовку к сдаче кандидатского экзамена, входит в составляющую «Дисциплины (модули), в том числе элективные, факультативные дисциплины (модули), дисциплины, направленные на подготовку к сдаче кандидатских экзаменов» образовательного компонента программы подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 2.6.7. Технология неорганических веществ, направленности (профилю) «Технология неорганических веществ» и изучается в 5 семестре.

3. ПЛАНИРУЕМЫЕРЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ТРЕБОВАНИЯ К НИМ

В результате изучения дисциплиныаспирант должен:

знать: основные закономерности химических процессов; основные химические производства; основные принципы организации химического производства, его структуру; методы оптимизации химико-технологических процессов с применением эмпирических и физико-химических моделей; основы теории процесса в химическом реакторе, методологию исследования взаимодействия процессов и химических превращений; основные понятия теории управления технологическими процессами;

уметь: выполнять материальные, тепловые и конструктивные расчёты, выбирать и обосновывать рациональную технологическую схему производства продукта, оценивать экономическую и технологическую эффективность производства, использовать основные химические законы, справочные данные для решения задач синтеза различных соединений, проводить качественный и количественный анализ с помощью химических и физикохимических методов;

владеть: методами технологических расчётов отдельных узлов и деталей химического оборудования; навыками проектирования химической аппаратуры; методами проведения физико-химического анализа сырья и химических продуктов; общими принципами и технологическими приёмами получения продуктов неорганического синтеза; методами анализа эффективности работы химических аппаратов и производств;

современной научно-технической и патентной информацией в области химии и химической технологии.

Уровень владения аспирантом знаниями, умениями и навыками по итогам освоения дисциплины определяется на основании результатов промежуточной аттестациивкандидатского экзамена.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины «Технология неорганических веществ» с учетом промежуточной аттестации по дисциплине составляет 72 академических часа,2 зачётные единицы.

Вид учебной работы	Всего ак. часов	Ак. часы по семестрам 5	
Аудиторные занятия, в том числе:	30	30	
Лекции	20	20	
Практические занятия	10	10	
Самостоятельная работа аспирантов, в том числе	42	42	
Самостоятельное изучение отдельных разделов дисциплины. Подготовка устных сообщений	10	10	
Освоение пакетов специализированных прикладных программ по обработке экспериментальных данных	14	14	
Трудоемкость дисциплины	72	72	
Вид промежуточной аттестации – кандидатский экзамен (КЭ)	КЭ	кэ	
Общая трудоемкость дисциплиныак. час.	72	72	
зач. ед.	2	2	

4.2. Содержание дисциплины

Учебным планом предусмотрены: лекции, практические занятияи самостоятельная работа.

4.2.1. Разделы дисциплины и виды занятий

		Виды занятий				
№ п/п	Наименование разделов	Всего ак. часов	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа
1.	Сырьевая база производств неорганических веществ и материалов	22	6	2	-	14
2.	Типовые процессы в технологии неорганических веществ	22	4	4	-	14
3.	Научные основы экспериментальных исследований химических систем и химикотехнологических процессов	28	10	4	-	14
	Итого:	72	20	10	-	42

4.2.2. Содержание разделов дисциплины

Дисциплина включает 3 темы, содержание которых направлено наизучение теоретических основ химико — технологических процессов;типовых процессов в технологии неорганических веществ; принципов модернизации и создания малоотходных производств.

Тема 1. Сырьевая база производств неорганических веществ и материалов

Сырьевые проблемы химической промышленности. Требования, предъявляемые к сырью. Характеристика, основные месторождения и запасы различных видов сырья. Принципы и основные показатели процесса обогащения сырья. Комплексное использование сырья. Утилизация и переработка отходов. Природные источники сырья для получения промышленных газов. Характеристика основных видов сырья для производства катализаторов, кислот, минеральных удобрений, солей, щелочей.

Термодинамические свойства веществ, идеальных и реальных химических систем. Влияние параметровхимических систем на термодинамические характеристики. Методы расчёта термодинамических характеристик веществ, химических и фазовых превращений. Эксергия и эксергетический анализ химико-технологических систем. Характеристика основных типов систем. Принципы химического и фазового равновесия. Кинетика химических реакций. Кинетика гетерогенных процессов: стадии и области протекания. Каталитический метод ускорения химических превращений.

Самостоятельная работа.

Сырьевая база производств неорганических веществ и материалов. Анализ современной научно-технической литературы. Теоретические основы химикотехнологических процессов. Теоретическое обоснование экспериментальных данных.

Самостоятельное изучение отдельных разделов дисциплины по заданию преподавателя. Подготовка устного сообщения.

Рекомендуемая литература:

основная: [1-2]; дополнительная: [1-4].

Тема 2. Типовые процессы в технологии неорганических веществ

Технологические процессы в технологии производства синтез-газа. Газификация твердого топлива. Крекинг, конверсия углеводородного жидкого Плазмохимические процессы. Методы разделения многокомпонентных газовых смесей. Основы получения низких температур. Сорбционные методы разделения газовых смесей. Твёрдые и жидкие сорбенты. Промышленные методы очистки газовых сред от сернистых соединений, оксидов азота, углерода, паров воды, хлора. Равновесие в водно-солевых системах. Графические методы изображения равновесий дву-трёхчетырёхкомпонентных систем. Использование диаграмм растворимости для выбора рациональных переработки сложных солевых систем. Взаимодействие в системах твёрдое-газ, твёрдое-твёрдое в солевой технологии. Взаимодействие в системе твёрдое-жидкое. Кинетика растворения и пути интенсификации процесса. Технологии важнейших неорганических веществ: аммиак, метанол, серная, азотная и фосфорная кислоты, минеральные удобрения, соли. Основные тенденции развития предприятий отрасли. Технология неорганических химических реактивов и особо чистых веществ.

Самостоятельная работа.

Типовые процессы в технологии неорганических веществ. Проблемы совершенствования техники и технологии. Проблемы развития и расширения сырьевой базы. Вторичные источники сырья.

Самостоятельное изучение отдельных разделов дисциплины по заданию преподавателя. Подготовка устного сообщения.

Рекомендуемая литература:

основная: [3-4]; дополнительная: [5-6].

Тема 3. Научные основы экспериментальных исследований химических систем и химико-технологических процессов

Методы научного познания. Эмпирические и теоретические знания, их диалектическое единство. Основные задачи экспериментальных исследований в технологии неорганических веществ. Специфика научных исследований в неорганической технологии. Исследование кинетики химических реакций и массообмена в гетерогенных системах. Математическое моделирование и обработка экспериментальных данных. Специфика изучения процессов в различных средах. Организация эксперимента. Статистическая обработка экспериментальных данных. Физико-химические методы исследования неорганических веществ и материалов. Технико-экономическая оценка результатов исследования.

Проблемы создания безотходной технологии-технологии полного использования всех компонентов сырья при минимальном расходе материальных ресурсов и энергии. Характеристика отходов и газовых выбросов отрасли. Разработка новых технологических процессов исключающих выбросы вредных веществ. Технология очистки газовых выбросов, сточных вод. Проблемы утилизации и переработки отходов производств.

Самостоятельная работа.

Научные основы экспериментальных исследований химических систем и химикотехнологических процессов. Применение современных методов исследования. Обработка экспериментальных данных.

Самостоятельное изучение отдельных разделов дисциплины по заданию преподавателя. Подготовка устного сообщения.

Рекомендуемая литература:

основная: [5-6]; дополнительная: [7].

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИИЗУЧЕНИИ ДИСЦИПЛИНЫ

При изучении дисциплины «Технология неорганических веществ» применяются:

Лекции, которые являются одним из важнейших видов учебных занятий и составляют основу теоретической подготовки аспирантов.

Цели лекционных занятий:

- дать систематизированные научные знания по дисциплине, акцентировать внимание на наиболее сложных вопросах дисциплины;
- стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Практические занятия, цель которых углубить и закрепить знания, полученные на лекциях и в процессе самостоятельной работы аспиранта. На практических занятиях

аспиранты делают краткие устные сообщения о результатах самостоятельной работы с последующим обсуждением при участии преподавателя.

Консультации (текущая консультация, накануне кандидатского экзамена) является одной из форм руководства учебной работой аспирантов и оказания им помощи в самостоятельном изучении материала дисциплины, в ликвидации имеющихся пробелов в знаниях,

задолженностей по текущим занятиям.

Текущие консультации проводятся преподавателем, ведущим занятия в учебной группе, и носят как индивидуальный, так и групповой характер.

Самостоятельная работааспирантов направлена на углубление и закрепление знаний, полученных на лекциях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим практическим занятиям и промежуточнойаттестации в форме кандидатского экзамена.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ИПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

6.1. Проведение текущего контроля успеваемости

Текущий контроль используется для оценкихода и уровня достижения аспирантом планируемых результатов освоения дисциплины.

Текущий контроль осуществляется в ходе учебного процесса, консультирования аспирантов и проверки выполнения самостоятельной работы.

Основными формами текущего контроля по дисциплине являются:

- —устный опрос аспиранта по контрольным вопросам(устный ответ);
- —устное сообщение аспиранта о результатах выполненной самостоятельной работы (устный ответ).

6.2. Примерный перечень вопросов для текущего контроля успеваемости Тема 1. Сырьевая база производств неорганических веществ и материалов

- 1. Перечислите отрасли промышленности, потребляющие азотную кислоту.
- 2. Какие экологические проблемы существуют в производстве азотной кислоты?
- 3. Какие химические соединения могут присутствовать в системе $HNO_3 H_2O$?
- 4. Какие уравнения описывают процесс окисления аммиака на платиновых катализаторах?
- 5. Каким образом могут быть снижены потери платиноидных катализаторов в процессе окисления аммиака?
 - 6. В каких пределах должно находиться содержание аммиака в АВС?
 - 7. Каким образом влияют давление и температура по процесс окисления NO?
 - 8. Изложите механизм взаимодействия оксидов азота и воды.
- 9. Опишите основные реакции нейтрализации выхлопных газов в производстве азотной кислоты.
- 10. Какие физико-химические процессы протекают при нейтрализации азотной кислоты аммиаком?

Тема 2. Типовые процессы в технологии неорганических веществ

1. Перечислите и дайте сравнительную характеристику способов очистки конвертированного газа от диоксида углерода.

- 2. Перечислите и дайте сравнительную оценку различных способов очистки азотоводородной смеси от монооксида углерода.
- 3. Перечислите необходимые справочные материалы для расчета абсорбционного аппарата в системе жидкостной очистки и приведите последовательность такого расчета. 4. Обоснуйте необходимость рецикловой схемы в производстве аммиака и выбор критерия, по которому определяется объем рецикла.
- 5. Обоснуйте выбор давления процесса по технологической цепи переработки природного газа при получении аммиака или метанола.
- 6. Объясните физические основы криогенной технологии, используемой с целью разделения воздуха и технологических газов.
- 7. Дайте сравнительную характеристику конструкций каталитических реакторов, используемых в аммиачных производствах.
- 8. Перечислите необходимые справочные материалы для расчета каталитического реактора и приведите последовательность такого расчета.
 - 9. Конструкция аппарата ИТН.
- 10. Почему процесс нейтрализации азотной кислоты аммиаком в аппарате ИТН проводят при недостатке аммиака?

Тема 3. Научные основы экспериментальных исследований химических систем и химико-технологических процессов

- 1. Представьте блок схему производства гранулированной аммиачной селитры и опишите основные стадии ее получения.
- 2. Охарактеризуйте технические требования, предъявляемые к аммиачной селитре, выпускаемой промышленностью. Чем определяется марка аммиачной селитры.
- 3. Объясните, с какой целью проводится модифицирование аммиачной селитры, и в чем состоит физическая сущность данной операции.
- 4. Объясните, чем обусловлены взрывоопасные свойства аммиачной селитры, и какие меры необходимо принимать, чтобы не допустить взрывоопасной ситуации.
- 5. Опишите технологическую схему производства аммиачной селитры в крупнотоннажных агрегатах.
- 6. Опишите основное технологическое оборудование в производстве аммиачной селитры.
- 7. Перечислите и дайте сравнительную характеристику различных способов химического связывания молекулярного азота.
- 8. Дайте сравнительную характеристику различных видов сырья и способов его переработки при получении водорода и синтез-газа.
- 9. Перечислите и дайте сравнительную характеристику различных способов очистки газов от соединений серы.
- 10. Опишите, каким образом регулируют состав синтез-газа для производства аммиака и различных органических продуктов.

6.3. Критерии оценивания устных ответов аспирантов

Развернутый ответ аспиранта должен представлять собой связное, логически последовательное сообщение на определенную тему, показывать его умение применять определения, правила в конкретных случаях.

При оценке устного ответа аспиранта необходимо руководствоваться следующими критериями:

1) полнота и правильность ответа;

- 2) степень осознанности, понимания изучаемого материала;
- 3) знание терминологии и правильное ее использование;
- 4) соответствие требованиям рабочей программы по дисциплине.

Оценка «зачтено» за устный ответ ставится, если аспирант:

- 1) ориентируется в излагаемом материале, владеет базовой терминологией в объеме, предусмотренном рабочей программой дисциплины;
- 2) обнаруживает понимание материала, может обосновать свои суждения, подкрепляет теоретические положения примерами;
- 3) умеет структурировать содержание ответа в соответствии с поставленным вопросом;
- 4) не допускает (или допускает немногочисленные негрубые) ошибки при ответе; способен исправить допущенные им ошибки при помощи уточняющих вопросов преподавателя.

6.4. Проведение промежуточной аттестации в форме кандидатского экзамена

Сдача аспирантом кандидатского экзамена по дисциплине «Технология неорганических веществ» осуществляется в порядке, утвержденном Министерством науки и высшего образования Российской Федерации.

6.5. Критерии и процедура оценивания результатов кандидатского экзамена

Оценки за представление аспирантом индивидуального задания выставляются, исходя из следующих критериев:

- **«отлично»**: если аспирант глубоко и прочно усвоил весь программный материал лекций и демонстрирует это в задании, все документы выполнены без ошибок, последовательно, грамотно и логически построены, излагает свои решения, хорошо их объясняя и обосновывая;
- **«хорошо»**: если аспирант твердо знает программный материал, не допускает существенных неточностей в его изложении, использует ограниченный круг источников, вместо своего решения в задании излагает одно из стандартных.
- **«удовлетворительно»**: если аспирант поверхностно усвоил основной материал лекций, не знает деталей, допускает неточности, при разработке задания привлекает мало оригинального материала, пользуясь, в основном, стандартными решениями и формулировками;
- **«неудовлетворительно»**: если аспирант не знает значительной части программного материала, в задании допущены существенные ошибки, с большими затруднениями выполняет или, по существу, не выполняет задания, не может его объяснить.

7. ПЕРЕЧЕНЬ УЧЕБНОЙ ЛИТЕРАТУРЫ И РЕСУРСОВ СЕТИ «ИНТЕРНЕТ»

7.1. Основная литература

1. Горбовский, К. Г. Технология неорганических веществ: минеральные удобрения и соли. Термическое разложение комплексных удобрений на основе нитрата аммония [Электронный ресурс]: учебное пособие для спо / К. Г. Горбовский, А. И. Казаков. — Санкт-Петербург: Лань, 2022. — 148 с.— Режим доступа: -

https://e.lanbook.com/book/193264 – Загл. с экрана

2. Химическая технология неорганических веществ : учебное пособие / Т. Г. Ахметов, В. М. Бусыгин, Л. Г. Гайсин, Р. Т. Ахметова ; под редакцией Т. Г. Ахметова. — 2-е изд., стер. — Санкт-Петербург : Лань, 2022. — 452 с. — Режим доступа: -

https://e.lanbook.com/book/206612- Загл. с экрана

3. Лебухов, В. И. Физико-химические методы исследования [Электронный ресурс]: учебник / В. И. Лебухов, А. И. Окара, Л. П. Павлюченкова. — Санкт-Петербург: Лань, 2022. — 480 с. – Режим доступа: -

https://e.lanbook.com/book/211055- Загл. с экрана

4. Химическая технология неорганических веществ. Книга 2 [Электронный ресурс]: учебное пособие / Т. Г. Ахметов, Р. Т. Ахметова, Л. Г. Гайсин, Л. Т. Ахметова. — 2-е изд., стер. — Санкт-Петербург: Лань, 2022. — 536 с. – Режим доступа: -

https://e.lanbook.com/book/209708- Загл. с экрана

- 5. Процессы и аппараты химической технологии. Общий курс. В двух книгах. Книга 1[Электронный ресурс] / В. Г. Айнштейн, М. К. Захаров, Г. А. Носов [и др.]. 9-е изд., испр. Санкт-Петербург: Лань, 2022. 916 с— Режим доступа: https://e.lanbook.com/book/256097— Загл. с экрана
- 6. Конюхов, В. Ю. Хроматография [Электронный ресурс]:учебник / В. Ю. Конюхов. Санкт-Петербург: Лань, 2022. 224 с. Режим доступа: https://e.lanbook.com/book/210989—Загл. с экрана

7.2. Дополнительная литература

1. Вербицкий, В. В. Исследование качества эксплуатационных материалов. Лабораторный практикум [Электронный ресурс]: учебное пособие / В. В. Вербицкий, В. С. Курасов, В. В. Драгуленко. — Санкт-Петербург: Лань, 2022. — 80 с.— Режим доступа:

https://e.lanbook.com/book/206948- Загл. с экрана

2. Спектральные методы анализа. Практическое руководство [Электронный ресурс]: учебное пособие / В. И. Васильева, О. Ф. Стоянова, И. В. Шкутина, С. И. Карпов. — Санкт-Петербург : Лань, 2022. — 416 с. – Режим доступа: -

https://e.lanbook.com/book/211631- Загл. с экрана

3. Сизова, Л.С. Аналитическая химия. Оптические методы анализа [Электронный ресурс] : учебное пособие / Л.С. Сизова. — Электрон.дан. — Кемерово :КемГУ, 2006. — 180 с. — Режим доступа:

https://e.lanbook.com/book/4592. — Загл. с экрана.

4.Долгоносов, А. М. Колоночная аналитическая хроматография[Электронный ресурс]: практика, теория, моделирование : монография / А. М. Долгоносов, О. Б. Рудаков, А. Г. Прудковский. — 3-е изд., стер. — Санкт-Петербург : Лань, 2022. — 468 с. — Режим доступа:

https://e.lanbook.com/book/183603- Загл. с экрана

5. Горелик, В. Ю. Спектральный метод анализа линейных нестационарных систем [Электронный ресурс]: учебное пособие / В. Ю. Горелик. — Москва : ФИЗМАТЛИТ, 2020. — 104 с. — Режим доступа:

https://e.lanbook.com/book/185599- Загл. с экрана

6.Исакова, И. В. Катализ в химической технологи неорганических веществ: практикум [Электронный ресурс] : учебное пособие / И. В. Исакова. — Кемерово :КузГТУ имени Т.Ф. Горбачева, 2021. — 48 с. — Режим доступа:

https://e.lanbook.com/book/200861- Загл. с экрана

7. Прокофьев, В. Ю. Оборудование производств неорганических веществ [Электронный ресурс]: учебное пособие / В. Ю. Прокофьев. — Иваново : ИГХТУ, 2015. — 115 с. — Режим доступа:

https://e.lanbook.com/book/69971- Загл. с экрана

7.3.Учебно-методическое обеспечение самостоятельной работы аспиранта

- Методические указания для самостоятельной работы аспирантов;
- —Методические указания по практическим занятиям.

7.4. Ресурсы сети «Интернет»

- 1. Информационная справочная система «Консультант плюс».
- 2. Библиотека ГОСТов www.gostrf.com.
- 3. Сайт Российской государственной библиотеки. http://www.rsl.ru/
- 4. Сайт Государственной публичной научно-технической библиотеки России. http://www.gpntb.ru/
 - 5. Каталог образовательных интернет ресурсов http://www.edu.ru/modules.php
- 6. Электронные библиотеки: http://www.pravoteka.ru/, http://www.zodchii.ws/, http://www.tehlit.ru/.
- 7. Специализированный портал по информационно-коммуникационным технологиям в образовании http://www.ict.edu.ru

7.5. Электронно-библиотечные системы:

- -ЭБС издательства «Лань» https://e.lanbook.com/
- -ЭБС издательства «Юрайт» https://biblio-online.ru/
- -ЭБС «Университетская библиотека онлайн» https://biblioclub.ru/
- -9EC «ZNANIUM.COM» https://znanium.com
- -ЭБС «IPRbooks» https://<u>iprbookshop.ru</u>
- -ЭБС «Elibrary» https://elibrary.ru
- -Автоматизированная информационно-библиотечная система «Mark -SQL» https://informsystema.ru
 - -Система автоматизации библиотек «ИРБИС 64»https://elnit.org

7.6. Информационные справочные системы:

- 1. Система ГАРАНТ: информационный правовой портал [Электронный ресурс]. Электр.дан. http://www.garant.ru/
- 2. Консультант Плюс: справочно поисковая система [Электронный ресурс]. Электр.дан. www.consultant.ru/
- 3.ООО «Современные медиа-технологии в образовании и культуре». http://www.informio.ru/.
- 4.Программное обеспечение Норма CS «Горное дело и полезные ископаемые» https://softmap.ru/normacs/normacs-gornoe-delo-i-poleznye-iskopaemye/
- 5.Информационно-справочная система «Техэксперт: Базовые нормативные документы» http://www.cntd.ru/.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Аудитории для проведения лекционных занятий, консультаций, текущего контроля и промежуточной аттестации

Аудитория для проведения лекционных занятий: 69 посадочных мест, Стул – 70 шт., стол – 21 шт., доска маркерная – 2 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.

Аудитория для самостоятельной работы, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: 13 посадочных мест, Стул -25 шт., стол -2 шт., стол компьютерный -13 шт., шкаф -2 шт., доска аудиторная маркерная -1 шт., АРМ учебное ПК (монитор + системный блок) -14 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.

8.2. Помещения для самостоятельной работы

1.Оснащенность помещения для самостоятельной работы: 13 посадочных мест. Стул -25 шт., стол -2 шт., стол компьютерный -13 шт., шкаф -2 шт., доска аудиторная маркерная -1 шт., APM учебное ПК (монитор + системный блок) -14 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.

2. Оснащенность помещения для самостоятельной работы: 17 посадочных мест. Доска для письма маркером – 1 шт., рабочие места студентов, оборудованные ПК с доступом в сеть университета – 17 шт., мультимедийный проектор – 1 шт., АРМ преподавателя для работы с мультимедиа – 1 шт. (системный блок, мониторы – 2 шт.), стол – 18 шт., стул – 18 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.

8.3. Помещения для хранения и профилактического обслуживания оборудования

1. Центр новых информационных технологий и средств обучения:

Оснащенность: персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -4 шт., сетевой накопитель -1 шт., источник бесперебойного питания -2 шт., телевизор плазменный Panasonic -1 шт., точка Wi-Fi -1 шт., паяльная станция -2 шт., дрель -5 шт., перфоратор -3 шт., набор инструмента -4 шт., тестер компьютерной сети -3 шт., баллон со сжатым газом -1 шт., паста теплопроводная -1 шт., пылесос -1 шт., радиостанция -2 шт., стол -4 шт., тумба на колесиках -1 шт., подставка на колесиках -1 шт., икаф -5 шт., кресло -2 шт., лестница Alve -1 шт.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.

2. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -5 шт., стул -2 шт., кресло -2 шт., шкаф -2 шт., персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -2 шт., МФУ -1 шт., тестер компьютерной сети -1 шт., баллон со сжатым газом -1 шт., шуруповерт -1 шт.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.

3. Центр новых информационных технологий и средств обучения:

Оснащенность: стол -2 шт., стулья -4 шт., кресло -1 шт., шкаф -2 шт., персональный компьютер -1 шт. (доступ к сети «Интернет»), веб-камера Logitech HD C510 -1 шт., колонки Logitech -1 шт., тестер компьютерной сети -1 шт., дрель -1 шт., телефон -1 шт., набор ручных инструментов -1 шт.

Перечень лицензионного программного обеспечения:

MicrosoftWindows 10 Professional Корпорация Майкрософт, срок полезного использования – бессрочно.

MicrosoftOfficeStandard 2019 Russian Корпорация Майкрософт срок полезного использования – бессрочно

Антивирусное программное обеспечение KasperskyEndpointSecurity срок полезного использования – 17.12.21 - 17.12.22.