ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ

СОГЛАСОВАНО

Руководитель ОПОП ВО профессор В.Н. Бричкин

Проректор по образовательной деятельности Д.Г. Петраков

РАБОЧАЯ ПРОГРАММА

МЕТАЛЛУРГИЧЕСКИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА И ОБРАБОТКИ МЕТАЛЛОВ

Уровень высшего образования: Бакалавриат

Направление подготовки: 22.03.02 Металлургия

Направленность (профиль): Металлургия цветных металлов

Квалификация выпускника: бакалавр

Форма обучения: очная

Составитель: доцент Фокина С.Б.

Санкт-Петербург

Рабочая программа дисципли обработки металлов» составлена: — в соответствии с требованиям				-	
«22.03.02 Металлургия», утвержденного	приказом Миноб	рнауки Росси	и № 702 от	: 02.07.2020 г.;	
 на основании учебного плана 	а по направлени	ю подготовкі	и «22.03.02	2 «Металлургия	√.F
направленность (профиль) «Металлургия	цветных металло	OB».			
Составитель		к.т.н., доц.	С.Б. Фо	окина	
Рабочая программа рассмотрена и одобрена на заседании кафедры металлургии от 04.02.2021 г., протокол № 16.					
Рабочая программа согласована	:				
Начальник отдела лицензирования, аккредитации и контроля качества образования			Ю.А. Д	убровская	
Начальник отдела методического обеспечения учебного процесса			А.Ю. Ро	оманчиков	

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ:

Цель дисциплины:

– дать студентам основы знаний в области технологии и аппаратуры производства черных и цветных металлов и сплавов, литейного производства, обработки металлов давлением и термической обработки сплавов.

Основные задачи дисциплины:

– изучение теории, технологии и аппаратурного оформления основных металлургических процессов, используемых при производстве чугуна и стали, тяжелых, легких, благородных и редких цветных металлов и сплавов, в литейном производстве, при обработке металлов давлением и термической обработке сплавов. При рассмотрении всех технологических процессов обращается внимание студентов на вопросы экологии.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Металлургические технологии производства и обработки металлов» относится к части, формируемой участниками образовательных отношений основной профессиональной образовательной программы по направлению подготовки «22.03.02 Металлургия» и изучается в 5 семестре.

Предшествующими курсами, на которых непосредственно базируется дисциплина «Металлургические технологии производства и обработки металлов» являются: «Химия», «Физическая химия», «История развития горного дела и металлургии», «Введение в специальность», «Основы обогащения руд», «Материаловедение», «Методы исследования физикохимических систем».

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины «Металлургические технологии производства и обработки металлов» направлен на формирование следующих компетенций:

Формируемые ко	омпетенции	Код и наименование индикатора	
Содержание компетенции	Содержание компетенции	достижения компетенции	
Способен выбирать технологии переработки конкретного вида минерального сырья и производить расчеты основных металлургических операций	ПКС-3	ПКС-3.1. Знает технологии и физико-химические процессы получения цветных и благородных металлов из минерального сырья. ПКС-3.4. Владеет методиками расчета материальных потоков, потребностей материально-технических ресурсов, включая энергоносители.	
Способен выбирать конструкционные материалы для металлургических агрегатов	ПКС-5	ПКС-5.3. Владеет навыками выбора материалов для различных деталей и конструкций в зависимости от условий их эксплуатации.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 ак. часа.

Вид учебной работы	Всего ак. часов	Ак. часы по семестрам 5
Аудиторные занятия, в том числе:	102	102
Лекции	34	34
Практические занятия (ПЗ)	34	34
Лабораторные работы (ЛР)	34	34
Самостоятельная работа студентов (СРС), в том числе:	42	42
Подготовка к практическим занятиям	15	15
Подготовка к лабораторным работам	15	15
Написание реферата	12	12
Вид промежуточной аттестации — экзамен	36(Э)	36(Э)
Общая трудоемкость дисциплины ак. час	180	180
зач. ед.	5	5

4.2 Содержание дисциплины

Учебным планом предусмотрены: лекции, практические занятия, лабораторные работы и самостоятельная работа.

4.2.1. Разделы дисциплины и виды занятий

				Виды занятий				
№ п/п	Наименование раздела дисциплины		Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа студента		
1.	Введение	2	2	-	-	-		
2.	2. Физико-химия металлургических процессов		2	6	6	4		
3.	3. Основы производства чугуна и стали		4	2		2		
4.	4. Основы производства тяжелых цветных металлов		10	6	12	12		
5.	5. Основы производства легких цветных металлов		4	6	-	4		
6.	Основы производства тугоплавких редких и благородных металлов	14	4	6	-	4		
7.	Получение литых заготовок и слитков	18	2	4	6	6		
8.	8. Производство сплавов металлов прямым сплавлением		2	-	-	2		
9.	9. Обработка металлов давлением		2	-	-	2		
10. Термическая обработка металлоизделий		22	2	4	10	6		
	Итого:	144	34	34	34	42		

4.2.2. Содержание разделов дисциплины

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак. часах
1.	Введение	Роль и значение производства металлов. Промышленная классификация металлов. Масштабы производства важнейших металлов. Сырье для производства металлов. Понятие о технологической схеме его переработки.	2
2.	Физико-химия металлургических процессов	Прочность соединений металлов с кислородом и серой. Диаграмма восстановимости оксидов металлов оксидом углерода (II). Теоретические основы плавок на металл и штейн. Характеристика основных продуктов металлургических плавок. Двойные и тройные диаграммы плавкости сульфидов и оксидов металлов.	2
3.	Основы производства чугуна и стали	Физико-химические свойства и применение железа и его сплавов. Характеристика сырья для получения железа (минералы, руды, концентраты) и способы его переработки. Подготовка шихты к доменной плавке. Общее описание доменной плавки. Устройство доменной печи. Основные процессы, протекающие в доменной печи. Восстановление оксидов железа и других соединений. Образование и науглероживание чугуна, шлакообразование. Десульфуризация при доменной плавке, продукты доменной плавки и их использование. Способы производства стали из чугуна. Основные реакции сталеплавильных процессов (удаление примесей, раскисление стали). Устройство и принцип действия конвертеров, мартеновских и электрических печей для производства стали. Теоретические основы и практика производства различных ферросплавов. Способы бездоменного получения железа и стали в виде губчатого и жидкого металла.	4
4.	Основы производства тяжелых цветных металлов	Физико-химические свойства меди и ее соединений; области применения меди. Сырье для производства меди и краткая характеристика методов его переработки. Сущность и назначение окислительного обжига сульфидных медных концентратов. Плавка сульфидного медьсодержащего сырья на штейн в различных типах агрегатов. Переработка медных штейнов на черновую медь конвертированием. Огневое и электролитическое рафинирование меди. Общие сведения о получении меди гидрометаллургическим способом.	10

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак. часах
		Физико-химические свойства никеля и его соединений; области применения никеля. Сырье для производства никеля и краткая характеристика методов его переработки. Технология переработки сульфидных медноникелевых руд пирометаллургическим методом. Технология переработки окисленных никелевых руд пирометаллургическим методом с получением металлического никеля и ферроникеля. Общие сведения о гидрометаллургии никеля. Физико-химические свойства цинка и его соединений; области применения цинка. Сырье для производства цинка и краткая характеристика методов его переработки. Обжиг	
		цинковых концентратов. Основы получения цинка пирометаллургическим способом. Основы технологии переработки сульфидных цинковых концентратов гидрометаллургическим методом. Физико-химические свойства свинца и его соединений; области применения свинца. Сырье для производства свинца и способы его переработки пирометаллургическим путем. Двухступенчатый метод переработки свинцовых концентратов. Автогенные процессы переработки свинцовых концентратов. Теоретические основы и практика рафинирования чернового свинца пирометаллургическим методом.	
5.	Основы производства легких цветных металлов	Физико-химические свойства алюминия и магния и их соединений; области применения алюминия и магния. Сырье для производства алюминия и краткая характеристика способов его переработки. Получение глинозема по способу Байера и спеканием. Получение алюминия электролизом из криолито-глиноземного расплава. Сырье для производства магния и методы его переработки. Получение хлорида магния из различных видов сырья. Получение магния электролизом из расплава хлоридов.	4
6.	Основы производства тугоплавких редких и благородных металлов	Свойства и области применения титана , вольфрама , молибдена . Сырье для их производства. Получение диоксида титана и четыреххлористого титана. Производство металлического титана. Переработка вольфрамовых концентратов с получением триоксида вольфрама. Получение	4

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак. часах
		металлического вольфрама восстановлением его триоксида водородом. Получение триоксида молибдена и металлического молибдена. Свойства и области применения золота. Основные источники сырья для получения золота и краткая характеристика методов его переработки. Гравитационный метод извлечения золота из руд. Сущность метода переработки золотосодержащих концентратов амальгамацией. Переработка золотосодержащих руд цианистым процессом.	
7.	Получение литых заготовок и слитков	Назначение литейного производства и способы изготовления отливок. Общее описание технологии изготовления отливок в песчаных формах. Формовочные материалы. Оборудование и оснастка литейных цехов. Ручная и машинная формовка. Назначение и изготовление стержней. Окраска и сборка форм. Заливка и другие окончательные операции. Специальные способы литья. Литье в кокиль. Литье по выплавляемым моделям. Центробежное литье. Литье под давлением. Литье по газифицируемым моделям. Назначение разливки в слитки металлов, получаемых в металлургическом производстве. Разливка стали и изложницы. Устройство разливочного ковша и изложниц, технология разливки. Схема установок и технология непрерывной разливки стали. Разливка меди, никеля и свинца с получением анодов. Устройство разливочных машин и технология разливки. Переплавка и разливка чистых цветных металлов (меди, никеля, свинца, цинка, алюминия) в слитки. Конструкция и характеристика печей для плавки этих металлов. Технология разливка меди и алюминия. Технология получения гранулированного никеля.	2
8.	Производство сплавов прямым сплавлением	Сущность способа. Характеристика исходных материалов для получения различных сплавов. Технология производства сплавов (составление шихты, последовательность загрузки шихтовых материалов и их плавления, наведение шлака или защитного покрытия, дегазация сплава и его разливка). Схема устройства, описание конструкции и характеристика печей для производства сплавов (тигельные печи с пламенным и электрическими обогревом, отражательные печи, дуговые и индукционные	2

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак. часах
		электрические печи и др.).	
9.	Обработка металлов давлением	Назначение, сущность и основные виды обработки металлов давлением. Способы прокатки и технология получения различных изделий этим способом. Сущность процесса волочения. Производство волочением проволоки, прутков, профилей, труб. Прессовое оборудование и технология изготовления изделий прессованием. Понятие о свободной ковке. Схемы свободной ковки и технология ковки. Сущность изготовления изделий штамповкой и виды штамповки. Технология горячей и холодной объемной штамповки. Изготовление изделий методом листовой штамповки. Высокоскоростные и импульсные методы обработки металлов давлением.	2
10.	Термическая обработка металлоизделий	Назначение и сущность технологии различных видов термической обработки металлоизделий (закалка, отжиг, отпуск, нормализация, старение, цементация и др.). Схемы устройства и организация работы печей для термообработки металлоизделий.	2
		Итого:	34

4.2.3. Практические занятия

№ п/п	Раздел	Тематика практических занятий	Трудоемкость в ак. часах
1.	Раздел 2	Расчет термодинамических величин. Построение диаграмм фазовых равновесий.	2
2.	Раздел 3	Построение диаграммы равновесных кривых восстановления оксидов металлов в зависимости от температуры и содержания монооксида углерода.	2
3.	Раздел 4	Расчет материального и теплового балансов обжига и плавки на штейн сульфидных руд и концентратов.	10
4.	Раздел 5	Расчет материального баланса спекания нефелинового концентрата.	6
5.	Раздел 6	Расчет схемы золотоизвлекательной фабрики. Количественные определения в операциях обогащения золотосодержащей руды. Расчет процесса цианирования.	6
6.	Раздел 7	Расчет литниковых систем стальных отливок	4
7.	Раздел 10	Расчет термической обработки (закалки) углеродистой стали У8 и стали 45.	4
		Итого:	34

4.2.4. Лабораторные работы

№ п/п	Раздел	Тематика лабораторных работ	Трудоемкость в ак. часах
1.	Раздел 2	Обжиг сульфидных концентратов	6
2.	Раздел 4	Выщелачивание цинкового огарка	6
3.	Раздел 4	Переработка бедных окисленных цинксодержащих материалов вельц-процессом	6
4.	4. Раздел 7 Литье по выплавляемым моделям.		6
5.	Раздел 10	Термическая обработка углеродистой стали	10
	_	Итого:	34

4.2.5. Курсовая работа (проект) – курсовые работы (проекты) не предусмотрены.

4.2.6. Примерная тематика рефератов

3. Основные процессы, протекающие 4. Схема устройства вертикальных ко работа.	общая характеристика доменной плавки. в доменной печи. нвертеров и электропечей для производства стали и их
 Схема устройства доменной печи и Основные процессы, протекающие Схема устройства вертикальных ко работа. 	общая характеристика доменной плавки. в доменной печи. нвертеров и электропечей для производства стали и их
4. Схема устройства вертикальных ко работа.	нвертеров и электропечей для производства стали и их
работа.	
<u> </u>	штейн во взвешенном состоянии.
F Π	штейн во взвешенном состоянии.
5. Прямое получение железа и стали.	штейн во взвешенном состоянии.
6. Плавка медьсодержащего сырья на	
7. Плавка медьсодержащего сырья на	
8. Плавка медьсодержащего сырья на	штейн в отражательной и электрической печах.
9. Переработка медных штейнов на че	рновую медь конвертированием.
10. Огневое рафинирование черновой м	иеди.
11. Электролитическое рафинирование	меди.
12. Плавка на штейн сульфидного меди	ю-никелевого сырья.
13. Восстановительно-сульфидирующа	я плавка на штейн окисленных никелевых руд.
	икелевого штейнов конвертированием.
	райнштейна и никелевого концентрата, получаемого
при флотации файнштейна.	
*	ехнического оксида никеля на металл и аноды.
17. Электролитическое рафинирование	никеля.
18. Переработка окисленных никелевы	
19. Назначение и сущность обжига цин	ковых концентратов.
20. Выщелачивание цинкового огарка	
21. Очистка раствора сульфата цинка о	т примесей.
22. Электролиз раствора сульфата цини	
23. Агломерирующий обжиг свинцовы	х концентратов.
24. Восстановительная плавка свинцов	ого агломерата в шахтных печах.
25. Рафинирование чернового свинца п	ирометаллургическим методом.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В ходе обучения применяются:

Лекции, которые являются одним из важнейших видов учебных занятий и составляют основу теоретической подготовки обучающихся. Цели лекционных занятий:

-дать систематизированные научные знания по дисциплине, акцентировать внимание на наиболее сложных вопросах дисциплины;

-стимулировать активную познавательную деятельность обучающихся, способствовать формированию их творческого мышления.

Практические занятия. Цели практических занятий:

-совершенствовать умения и навыки решения практических задач.

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности.

Лабораторные работы. Цели лабораторных занятий:

-углубить и закрепить знания, полученные на лекциях и в процессе самостоятельной работы обучающихся с учебной и научной литературой;

Главным содержанием этого вида учебных занятий является работа каждого обучающегося по овладению практическими умениями и навыками профессиональной деятельности.

Консультации (текущая консультация, накануне экзамена) является одной из форм руководства учебной работой обучающихся и оказания им помощи в самостоятельном изучении материала дисциплины, в ликвидации имеющихся пробелов в знаниях, задолженностей по текущим занятиям, в подготовке письменных работ (проектов).

Текущие консультации проводятся преподавателем, ведущим занятия в учебной группе, научным руководителем и носят как индивидуальный, так и групповой характер.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях и других занятиях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточному контролю.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

6.1. Оценочные средства для текущего контроля успеваемости

Раздел 1. Введение в дисциплину: Основы металлургии цветных металлов. Подготовка сырья к металлургической переработке

- 1. Приведите промышленную классификацию металлов.
- 2. Что является основным сырьем для получения металлов?
- 3. Какие месторождения цветных металлов называют техногенными?
- 4. На какие руды делятся руды цветных металлов в зависимости от вида присутствующих металлсодержащих минералов?
 - 5. Что понимается под «комплексностью переработки» руды?
- 6. Из каких стадий состоит технологический процесс извлечения ценных компонентов из рудного сырья?
 - 7. Назовите механические методы подготовки руды к переработке.
 - 8. Назовите химические методы подготовки руды к переработке.
 - 9. Приведите примеры пирометаллургических процессов.
 - 10. Приведите примеры гидрометаллургических процессов.

Раздел 2. Физико-химия металлургических процессов

- 1. Чему равны константы равновесия реакций образования и диссоциации MeO и MeS?
- 2. Каким образом связаны константа равновесия химических реакций и энергия Гиббса?
- 3. Каким образом можно оценить прочность оксидов и сульфидов металлов?
- 4. При высоких температурах сродство меди к сере выше в каком сульфиде: CuS или Cu₂S?
- 5. Назовите наиболее часто используемыми восстановителями в металлургии.
- 6. Как определяется термодинамически минимальная температура для протекания процесса восстановления оксида металла в системе MeO С при избытке углерода в шихте?
 - 7. В чем заключается сущность плавок на штейн?
 - 8. Дайте характеристику основным продуктам металлургических плавок.
 - 9. Назовите основные составляющие отходящих металлургических газов.
- 10. Назовите принцип построения двойных и тройные диаграммы плавкости сульфидов и оксидов металлов.

Раздел 3. Основы производства чугуна и стали

- 1. Назовите сырье для получения железа (минералы, руды, концентраты) и способы его переработки.
 - 2. В каких агрегатах выплавляется чугун?
 - 3. В чем заключается подготовка шихты к доменной плавке?
 - 4. Дайте общее описание доменной плавки.
 - 5. Назовите продукты доменной плавки и их использование.
 - 6. Назовите способы производства стали из чугуна.
- 7. Приведите основные реакции сталеплавильных процессов (удаление примесей, раскисление стали).
 - 8. Сколько углерода в процентах содержится в чугуне?
 - 9. В каких печах выплавляют чугун?
 - 10. В каких формах углерод содержится в чугунах?

Раздел 4. Основы производства тяжелых цветных металлов

- 1. В чем заключается традиционный пирометаллургический способ производства меди?
- 2. Опишите процесс конвертирования меди.
- 3. Какое свойство химических соединений является основой для удаления примесей при огневом рафинировании черновой меди?
 - 4. Назовите состав электролита при электролитическом рафинировании меди.
 - 5. Назовите объемы производства и сферы применения никеля.
 - 6. Назовите основные минералы никеля.
 - 7. В чем заключается пирометаллургическая переработка окисленных никелевых руд?
- 8. Как необходимо вести процесс конвертирования для сохранения кобальта в файнштейне?
 - 9. Какими способами разделяют медь и никель, находящиеся в файнштейне?
 - 10. Назовите объемы производства и сферы применения цинка.
 - 11. Назовите основные минералы цинка.
- 12. Какая металлургическая операция в производстве цинка любым методом является первой?
- 13. За счёт какой реакции цинк в основном переходит в раствор при выщелачивании цинкового огарка?
- 14. За счёт какой реакции цинк переходит в раствор при выщелачивании сульфидного цинкового концентрата?
 - 15. Опишите основные способы рафинирования чернового цинка.
 - 16. Что выступает в качестве электролита при электролитическом рафинировании свинца?
 - 17. Какие вы знаете способы переработки шлаков восстановительной плавки свинца?
 - 18. Назовите объемы производства и сферы применения свинца.
 - 19. Назовите основные минералы свинца.
- 20. Укажите примесь, для удаления которой из свинца при его рафинировании используют в качестве реагентов NaNO₃ и NaOH.

Раздел 5. Основы производства легких цветных металлов

- 1. Назовите основное сырье для производства алюминия.
- 2. Какая твердая фаза образуется в технологически значимой области системы Na₂O-Al₂O₃-SiO₂-H₂O и в чем ее особенность?
 - 3. Назовите основные формы существования алюминатных ионов в растворах.
 - 4. В чем заключается роль затравки при декомпозиции алюминатных растворов?
 - 5. В какой форме присутствует галлий в алюминатно-щелочных щелочных растворах?
 - 6. Каким образом компенсируются потери щелочи в способе Байера?
- 7. Почему температура является наиболее действенным фактором интенсификации процесса выщелачивания по Байеру?
 - 8. По каким технологиям перерабатывают высококремистые бокситы?
 - 9. Назовите основной способ получения первичного алюминия.
- 10. Каким основным требованиям должен удовлетворять оксид алюминия как материал для электролиза?
 - 11. Назовите основные минералы и руды магния.
 - 12. Приведите аппаратуру и технологию обезвоживания карналлита.
- 13. Приведите аппаратуру и технологию обезвоживания кристаллогидратов хлорида магния.
 - 14. Перечислите основные требования к электролиту для получения магния.
- 15. Назовите катодные и анодные реакции, протекающие при электротермическом способе получения магния.

Раздел 6. Основы производства тугоплавких редких и благородных металлов

- 1. Назовите сырье для производства титана, вольфрама, молибдена.
- 2. Какими методами получают диоксид титана, четыреххлористый титан и металлический титан?
- 3. Назовите основные стадии переработки вольфрамовых концентратов с получением порошка вольфрама.
 - 4. Какой используется восстановитель для получения металлического вольфрама?
 - 5. Какими методами получают МоО₃ из обожженного концентрата?
- 6. Какой метод применяют на современных золотоизвлекательных фабриках для извлечения крупного золота из россыпей?
 - 7. Что такое амальгама золота?
- 8. Какое гравитационное оборудование наиболее широко применяется при промышленной добыче золота?
 - 9. Из каких стадий состоит процесс растворения золота в цианистом растворе?
- 10. Оцените влияние концентрации концентрация цианида на показатели цианирования золота.
 - 11. Назовите форму растворимого цианистого комплекса золота.
- 12. Какие технологические операции предшествуют процессу цианирования в случае переработки крупного золота?
- 13. Какой тип оборудования не относится к используемому при сверхтонком измельчении руды?
- 14. Как называется комплекс технологических операций по очистке и разделению благородных металлов?
 - 15. Раствор какой кислоты применяется для разделения золота и серебра?

Раздел 7. Получение литых заготовок и слитков

- 1. Каким образом классифицируют литейные сплавы?
- 2. Из каких материалов изготавливают литейные формы?
- 3. Какую роль выполняют стержни в литейной форме?
- 4. Какие технологические приемы используют для извлечения моделей из литейных форм?

- 5. Чем отличаются составы стержневых и формовочных смесей?
- 6. Почему модели для литья из сталей, чугунов и цветных металлов окрашиваются в различные цвета?
 - 7. Какие требования предъявляют к литейным материалам?
 - 8. Зачем в литейных формах делают выпоры?
 - 9. Какие виды брака характерны для литых изделий?
 - 10. Для каких сплавов используют литье под давлением?

Раздел 8. Производство сплавов металлов прямым сплавлением

- 1. Приведите классификацию сплавов металлов.
- 2. Назовите методы получения сплавов металлов.
- 3. В чем заключается сущность способа производство сплавов металлов прямым сплавлением?
- 4. Назовите основные технологические операции при производстве сплавов прямым сплавлением.
- 5. Каким требованиям должны соответствовать исходные материалы для получения различных сплавов прямым сплавлением?
 - 6. Укажите основные технологические операции производства сплавов.
- 7. Плавку сплавов металлов по возможности следует начинать с загрузки какой составляющей шихты?
 - 8. Назовите способы удаления газов из расплавленных металлов.
 - 9. Что называют угаром?
 - 10. Назовите печи для производства сплавов прямым сплавлением.

Раздел 9. Обработка металлов давлением

- 1. Перечислите преимущества и недостатки обработки металлов давлением по сравнению с литейным производством.
 - 2. Какие основные виды обработки металлов давлением вы знаете?
- 3. Какие бывают прокатные станы в зависимости от назначения и вида выпускаемой продукции?
 - 4. Какую продукцию получают волочением?
 - 5. Что такое интегральная деформация при волочении?
 - 6. Какие материалы используют для изготовления волок?
 - 7. Что характеризует коэффициент уковки?
 - 8. Для чего применяют биллетировку слитка?
- 9. В чем заключаются преимущества и недостатки горячей объемной штамповки в открытых штампах по сравнению со штамповкой в закрытых штампах?
 - 10. С какой целью поверхности ручьев штампов выполняют с уклонами?

Раздел 10. Термическая обработка металлоизделий

- 1. Какие точки называют критическими и почему?
- 2. Что такое критическая скорость закалки?
- 3. Чем обусловлено повышение твёрдости сталей после закалки?
- 4. Какие виды закалки вы знаете?
- 5. Какая термическая обработка называется отжигом?
- 6. Какие виды отжига вы знаете?
- 7. Чем отжиг отличается от нормализации?
- 8. Какая термическая обработка называется отпуском?
- 9. Какие виды отпуска вы знаете?
- 10. Какая термическая обработка называется поверхностной закалкой?

6.2. Оценочные средства для проведения промежуточной аттестации (экзамена)

6.2.1. Примерный перечень вопросов/заданий к экзамену:

Раздел 1. Введение в дисциплину: Основы металлургии цветных металлов. Подготовка сырья к металлургической переработке

- 1. Что называют технологической схемой переработкой руды?
- 2. Что называют технологической операцией при переработке руды?
- 3. Что включает в себя подготовка сырья к металлургической переработке механическими методами?
- 4. Что включает в себя подготовка сырья к металлургической переработке химическими методами?
- 5. Назовите ряд по возрастающей прочности при высоких температурах оксидов и сульфидов некоторых металлов.
- 6. Назовите основные составляющие штейновых расплавов, получаемых при переработке сырья тяжёлых цветных металлов.
 - 7. Что является главной основой плавок медь- и никельсодержащего сырья на штейн?
 - 8. Как оценивают прочность оксидов и сульфидов металлов?
 - 9. Какие сплавы железа называют чугунами?
- 10. Что выступает основным источникам тепла, необходимого для плавки шихты в доменной печи?
- 11. Назовите отличительную особенность низкотемпературных процессов прямого получения железа.
- 12. Назовите отличительную особенность высокотемпературных процессов прямого получения железа?
 - 13. Назовите традиционные виды плавок на штейн в металлургии меди.
- 14. Каково основное назначением диафрагмы при электролитическом рафинировании никеля?
- 15. Назовите задачи нейтрального выщелачивания, конечное значение рН пульпы при нейтральном выщелачивании цинкового огарка.
 - 16. На чем основан процесс обезмеживания чернового свинца?
- 17. Как осуществляется очистка алюминатных растворов от примеси кремния в способе Байера?
 - 18. Назовите основные реакции на аноде при электролитическом получении алюминия.
 - 19. Назовите основные реакции на катоде при электролитическом получении алюминия.
 - 20. Охарактеризуйте состав газовой фазы при электролитическом получении алюминия.
- 21. При каких температурах проводят процесс восстановления TiCl₄ магнием для получения металлического титана в стальном реакторе?
 - 22. Из каких основных стадий состоит переработка вольфрамовых концентратов?
 - 23. В чем заключается традиционный метод извлечения золота из собственно золотых руд?
 - 24. Какой реагент необходим для растворения золота в цианистом растворе?
- 25. Что чаще всего используют в качестве связующих материалов при изготовлении песчаных формовочных смесей?
 - 26. Назовите разновидности специальных способов литья.
 - 27. В каких методах литья не применяют стержни?
 - 28. Какие дефекты литья являются неисправивыми?
 - 29. В каких печах проводят плавку сплавов цветных металлов?
- 30. Какие диаграммы состояния систем используют в качестве сплава для выбора химического состава лигатур?
 - 31. Какую цель преследует модифицирование при плавке сплавов?
 - 32. Флюсы какого состава используются для плавки алюминиевых и магниевых сплавов?
 - 33. Какие свойства материала определяют возможность обработки его методами давления?
 - 34. Какой вид заготовок используют при прокатке?
 - 35. Какими факторами определяется точность профиля прессованных изделий?

- 36. Почему ограничена сверху масса получаемых объемной горячей штамповкой заготовок?
- 37. Приведите определения основных процессов термической обработки: отжига, нормализации и закалки.
 - 38. Выбор температур нагрева и скорости охлаждения при закалке стали.
 - 39. Как при закалке изменяются свойства стали?
- 40. Назовите режим полной закалки доэвтектоидной стали и полученную в результате этой операции структуру.

6.2.2. Примерные тестовые задания к экзамену

Вариант 1

№ п/п	Вопрос	Варианты ответа
1	2	3
1.	К группе основных тяжёлых цветных металлов относятся:	1. Cu, Ni, Zn, Al; 2. Cu, Ni, Zn, Pb; 3. Cu, Ni, Al, Pb; 4. Cu, Al, Zn, Pb.
2.	Разделение расплава на штейн и шлак возможно за счет различия в их:	 температуре плавления; электропроводности; плотности; теплопроводности.
3.	Степень десульфуризации – это:	 содержание серы в отходящих технологических газах; потери серы в ходе технологического процесса; количество окисленных сульфидов; отношение окисленной серы, перешедшей в газовую фазу, к исходному количеству серы в шихте, в процентах.
4.	Реакции восстановления оксида металла (MeO) водородом имеют вид:	1. MeO + C ⇔ Me + CO; 2. MeO + CO ⇔ Me + CO ₂ ; 3. MeO + CO + H ₂ ⇔ Me + H ₂ CO ₃ ; 4. MeO + H ₂ ⇔ Me + H ₂ O.
5.	Чугунами называются сплавы железа, содержащие углерода, %:	1. 0,1 - 0,5; 2. 0,5 - 1,0; 3. 7 - 12; 4. 1,0 - 2,0; 5. 2,5 - 7.
6.	Основным источникам тепла, необходимого для плавки шихты в доменной печи, является:	 нагретый воздух, подаваемый в печь через фурмы; тепло экзотермических реакций, протекающих в печи; тепло, вносимое в печь шихтой; горение кокса.
7.	Катоды при промышленном электролизе растворов сульфата меди не делают:	 из нержавеющей стали; из титана; из цинка; из меди.
8.	Кучное выщелачивание применяется для:	1. низкосортных медных руд; 2. потерянной при шахтной добыче

$N_{\underline{0}}$	Вопрос	Варианты ответа	
п/п		•	
1	2	3	
		медной руды; 3. богатых оксидных медных руд;	
		4. богатых сульфидных медных руд.	
9.	Назовите основные компоненты	1. Na ₂ O·Al ₂ O ₃ ; 2CaO·SiO ₂ ;	
7.	бокситового спека:	2. Na ₂ O·Al ₂ O ₃ ; Na ₂ O·Fe ₂ O ₃ ; 2CaO·SiO ₂ ;	
		3. CaO Al ₂ O ₃ ; Na ₂ O Fe ₂ O ₃ ;	
		4. CaO SiO ₂ ; 4CaO Al ₂ O ₃ Fe ₂ O ₃ .	
10.	Невосполнимые потери Na ₂ O в способе	1. свежей соды;	
	спекания бокситов возмещаются за счет:	2. введения свежего каустика;	
		3. каустификации технологических	
		полупродуктов;	
		4. каустификации соды известковым	
11	D 1	молоком.	
11.	В процессе электрорафинирования меди	1. электролите;	
	благородные металлы концентрируются в:	2. катоде;3. аноде;	
	<i>B</i> .	3. аноде, 4. шламе.	
12.	Для растворения золота в цианистом	1. известь;	
	растворе необходим дополнительный	2. едкий натр;	
	реагент	3. кислород;	
	•	4. водород.	
13.	Кристаллизатор при непрерывной	1. графита;	
	разливке стали изготовляют из:	2. меди;	
		3. алюминия;	
1.4		4. серебра.	
14.	Стержни при изготовлении литейных	1. скрепления полумоделей изделия;	
	форм из песчаных смесей служат для:	2. скрепления опок верхней и нижней полуформ;	
		3. образования в отливках отверстий и	
		полостей;	
		4. протыкания вентиляционных каналов в	
		формовочной смеси при изготовлении	
		литейной формы.	
15.	Модифицирование при плавке сплавов	1. уменьшить угар металлов;	
	преследует цель:	2. получить измельченную структуру	
		сплава;	
		3. уменьшить содержание примесей в	
		сплаве; 4. уменьшить содержание газов в сплаве.	
16.	Наведение шлака или защитного	1. уменьшить содержание примесей в	
- ••	покрытия при плавке сплавов металлов	сплаве;	
	преследует цель:	2. легировать металл;	
	-	3. модифицировать сплав;	
		4. уменьшить угар металла и содержание в	
		нем газов, очистить от некоторых	
17	П	примесей.	
17.	Процесс термообработки, применяемый	1. закалкой;	
	после закалки,	2. othyckom;	
	и заключающийся в нагреве стали,	3. отжигом; 4. нормализацией.	
	выдержке и последующим охлаждением, называется:	т. пормализациси.	
18.	Назначение оправки при обработке	1. направлять заготовку в канал	
20.	металлов волочением:	волочильного инструмента;	
		2. фиксировать вставку из алмаза в теле	

<u>№</u>	Вопрос	Варианты ответа
П/П	2	2
1	2	3
		матрицы;
		3. обеспечивать контроль параметров
		получаемых изделий;
		4. обеспечивать получение изделий.
		трубчатой формы
19.	Облой или заусенец образуется при	1. штамповкой в открытых штампах;
	обработке металлов давлением:	2. прокаткой;
		3. прессованием;
		4. листовой штамповкой.
20.	Процесс термообработки,	1. закалкой;
	заключающийся в нагреве	2. отпуском;
	стали до температуры 800-1150°,	3. отжигом;
	выдержке и	4. нормализацией.
	последующим охлаждением на воздухе,	
	называется:	

Вариант 2

	IAHT Z		
<u>№</u> п/п	Вопрос	Варианты ответа	
1	2	3	
1.	Что не относится к методам подготовки сульфидного медного сырья к гидрометаллургическому вскрытию?		
2.	Штейн представляет собой сплав	 сульфатов; металлов; сульфидов; оксидов. 	
3.	Халькопирит (CuFeS ₂) при нагреве разлагается с образованием:		
4.	Степень окремнения шлаков – это:	 количество двуокиси кремния в шлаках; количество двуокиси кремния, связанное в силикаты; избыточный кремнезем, не связанный в силикаты; атомное отношение кислорода в двуокиси кремния к сумме кислорода в основных оксидах. 	
5.	Доменный шлак представляет собой сплав:	 хлоридов; металлов; сульфидов; оксидов. 	
6.	Одним из продуктов доменной плавки является:	1. сталь; 2. колошниковый газ; 3. штейн; 4. расплав хлоридов.	
7.	Укажите среди перечисленных природных минералов цинка смитсонит:	1. ZnCO ₃ ; 2. ZnS; 3. (Zn,Fe)S;	

<u>№</u>	Вопрос	Варианты ответа	
п/п	2	3	
1	Z	4. 2ZnO·SiO ₂	
8.	Окислительный обжиг цинковых	1. 750-800;	
	концентратов в печах кипящего слоя для	2. 650-750;	
	последующей переработки огарка	3. 800-900;	
	гидрометаллургическим способом	4. 900-1000.	
	преимущественно ведут при		
	температурах, °С:		
9.	При рафинировании свинца от золота и	1. Zn;	
	серебра (обессеребривание) в качестве	2. Ca;	
	реагента используют:	3. Mg;	
		4. Sb.	
10.	Отметьте реакцию, за счет которой при	1. $2PbS + C = 2Pb + CS_2$;	
	производстве свинца из концентратов	$2. 2PbO + PbS = 3Pb + SO_2;$	
	методом реакционной плавки в основном	3. PbO + C = Pb + CO;	
	получается свободный свинец:	4. PbS + Fe = Pb + FeS.	
11.	При разбавлении щелочных	1. уменьшается;	
	алюминатных растворов их каустический	2. растет;	
	модуль:	3. не изменяется;	
10	TC V	4. стремится к 1,0.	
12.	Кремневый модуль алюминатного	1. молярное отношение Al ₂ O ₃ к SiO ₂ ;	
	раствора означает:	2. весовое отношение Al ₂ O ₃ к SiO ₂ ;	
		3. весовое отношение SiO ₂ к Al ₂ O ₃ ;	
13.	Vovov vorovi grana o ovorvi p	4. молярное отношение SiO ₂ к Al ₂ O ₃ .	
13.	Какой металл является основным в	1. медь;	
	цементных золотых осадках	2. золото; 3. серебро;	
		4. цинк.	
14.	Присутствие каких компонентов в	1. сульфидов железа;	
	золотосодержащей руде вызывает	2. органического углерода;	
	явление «прег-роббинга»?	3. кварца;	
		4. теллуридов.	
15.	Плавку сплавов металлов по возможности	1. с наиболее тугоплавкой составляющей	
	следует начинать:	шихты;	
		2. с загрузки лигатуры;	
		3. с загрузки модификатора;	
		4. с наиболее легкоплавкой составляющей	
		шихты.	
16.	Наиболее высококачественные сплавы	1. отходов производства и лигатур;	
	металлов получаются при изготовлении	2. вторичных металлов и сплавов;	
	их из:	3. лома металлов и лигатур;	
17	П	4. свежих металлов и лигатур.	
17.	Протягивание заготовки через	1. прокатка;	
	отверстие в матрице называется:	2. волочение;	
		3. штамповка;	
18.	Обработка метаннар нариачизм	4. прессование.	
10.	Обработка металлов давлением возможна благодаря их:	 твердости; вязкости; 	
	возможна опагодаря их.	2. вязкости, 3. пластичности;	
		3. пластичности, 4. износостойкости	
19.	Процесс термообработки,	1. закалкой;	
17.	заключающийся в нагреве	2. отпуском;	
	стали до определённой температуры,	3. отжигом;	
	выдержке и	4. нормализацией.	
	последующим медленном охлаждении	1 ,	

№ п/п	Вопрос	Варианты ответа
1	2	3
	вместе с печью, называется:	
20.	Процесс термообработки, заключающийся в нагреве стали до температур, превышающих фазовые превращения, выдержке и последующим быстрым охлаждением называется:	 закалкой; отпуском; отжигом; нормализацией.

Вариант 3

	тант 3		
№ п/п	Вопрос	Варианты ответа	
1	2	3	
1.	К группе благородных металлов относятся:	1. Cu, Ni; 2. Pt, Ir; 3. Mo, Ti; 4. Fe, Mg.	
2.	К механическим способам подготовки руды к металлургической переработке относится:	и 1. обжиг;	
3.	Константы равновесия химических реакций связаны с энергией Гиббса уравнением:	1. $\Delta G^0 = -RT \ln K_p$; 2. $\Delta G^0 = RT \ln K_p$; 3. $\Delta G^0 = -\alpha T \ln K_p$; 4. $\Delta G^0 = -RT \lg K_p$.	
4.	Реакции восстановления оксида металла (MeO) оксидом углерода (II) имеют вид:	1. MeO + C ⇔ Me + CO; 2. MeO + CO ⇔ Me + CO ₂ ; 3. MeO + CO + H ₂ ⇔ Me + H ₂ CO ₃ ; 4. MeO + H ₂ ⇔ Me + H ₂ O.	
5.	Для оценки плавкости шлаков доменной плавки больше всего подходит диаграмма плавкости тройной системы:	1. SiO ₂ - CaO – FeO;	
6.	Максимальное содержание фосфора в стали не должно превышать, %:	1. 0,02-0,03; 2. 0,3-0,4; 3. 0,05-0,07; 4. 0,4-0,5.	
7.	Омеднение никелевых катодов возникает при:		
8.	При конвертировании никелевых штейны в первую очередь окисляется:	1. Fe; 2. FeS; 3. Ni; 4. Ni ₃ S ₂	
9.	В качестве затравки при декомпозиции используют	1. Al ₂ O ₃ ; 2. Al(OH) ₃ ; 3. NaOH; 4. Al.	

№	Вопрос	Варианты ответа	
п/п	2	2	
10.	В современной промышленной практике основным методом получения металлического алюминия является:	1. электролиз расплава криолита; 2. углетермическое восстановление Al ₂ O ₃ ; 3. электролиз криолито-глиноземного расплава; 4. электролиз расплава хлоридов алюминия.	
11.	Стандартный редокс-потенциал золота составляет:	1. 0,26; 2. 1,88; 3. 0,4; 4. 0,1.	
12.	Растворение золота и серебра в цианистых растворах можно рассматривать как результат действия:	1. короткозамкнутого гальванического элемента; 2. анодной поляризации; 3. катодной поляризации; 4. концентрационной поляризации.	
13.	Литьё в кокиль это:	1. получение литьём деталей для изготовления выплавляемых моделей; 2. литьё во вращающиеся формы; 3. литьё в металлические формы при подаче металла под давлением; 4. литьё в металлические формы при свободной заливке металла.	
14.	Модельная плита используется:	 для установки на ней литейных форм перед заливкой металла; для установки на ней литейных форм после заливки в них металла; для выбивки отливок из формы; при изготовлении песчаных литейных форм. 	
15.	Разгрузка металла из поворотных печей для плавки сплавов металлов обычно осуществляют:	1. через летку; 2. через сливной носок; 3. вакуум ковшом; 4. через сифон.	
16.	Сплав никеля, хрома и алюминия, обладающий большой электропроводностью и жаропрочностью называется:	1. латунь; 2. дюралюминий; 3. бронза; 4. нихром.	
17.	Нагрев металла перед обработкой его давлением преследует цель:	 повысить хрупкость металла; повысить пластичность металла; довести температуру до величины, близкой к температуре плавления; снизить содержание примесей в металле. 	
18.	Тонкие сорта проволоки, калиброванные прутки получают:	 прокаткой; волочением; штамповкой; прессованием. 	
19.	Улучшение микроструктуры стали, её механических свойств и подготовка изделий к последующей термообработки достигается:	 нормализацией; отжигом; закалкой; отпуском. 	

<u>№</u> п/п	Вопрос	Варианты ответа
1	2	3
20.	Получение стали с высокой твёрдостью,	1. нормализацией;
	прочностью,	2. отжигом;
	износоустойчивостью достигается:	3. закалкой;
		4. отпуском.

6.3. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

6.3.1. Критерии оценок промежуточной аттестации (экзамена)

Примерная шкала оценивания знаний по вопросам/выполнению заданий экзамена:

Оценка			
«2»	Пороговый уровень освоения	Углубленный уровень освоения	Продвинутый уровень освоения
(неудовлетворительно)	«З» (удовлетворительно)	«4» (хорошо)	«5» (отлично)
Студент не знает значительной части материала, допускает существенные ошибки в ответах на вопросы	Студент поверхностно знает материал основных разделов и тем учебной дисциплины, допускает неточности в ответе на вопрос	Студент хорошо знает материал, грамотно и по существу излагает его, допуская некоторые неточности в ответе на вопрос.	Студент в полном объёме знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос
Не умеет находить решения большинства предусмотренных программой обучения заданий	Иногда находит решения, предусмотренные программой обучения заданий	Уверенно находит решения, предусмотренные программой обучения заданий	Безошибочно находит решения, предусмотренные программой обучения заданий
Большинство предусмотренных программой обучения заданий не выполнено	Предусмотренные программой обучения задания выполнены удовлетворительно	Предусмотренные программой обучения задания успешно выполнены	Предусмотренные программой обучения задания успешно выполнены

Примерная шкала оценивания знаний в тестовой форме:

iipumephusi uikutu oyenwounun shahuu o meemooon qopme.		
Количество правильных ответов, %	Оценка	
0-50	Неудовлетворительно	
51-65	Удовлетворительно	
66-85	66-85 Хорошо	
86-100	Отлично	

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Рекомендуемая литература

7.1.1. Основная литература

1. Основы металлургического производства: учеб. / В.А. Бигеев и др. Санкт-Петербург: Лань, 2017. 616 с.

https://e.lanbook.com/book/90165

2. Металлургия цветных металлов: учебник / В.М. Сизяков и др. СПб.: Горн. ун-т, 2015. 392 с.

http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=402

- 3. Уткин Н.И. Производство цветных металлов. М.: Интермет Инжиниринг, 2002. 442 с.
- 4. Металлургия черных и цветных металлов: Учебник для вузов / Е.В. Челищев, П.П. Арсеньев, В.В. Яковлев, Д.И. Рыжонков. М.: Металлургия, 1993. 446 с.

7.2. Дополнительная литература

- 1. Орлов А.К. Металлургия свинца и цинка: Учеб. пособие / С.-Петерб. гос. горн. ин-т (техн. ун-т). СПб.: СПГГИ, 2004. 71 с.
- 2. Металлургия алюминия: Учеб. пособие / Ю.В. Борисоглебский и др. Новосибирск: Наука. Сиб. издат. фирма РАН, 1999. 437 с.
- 3. Бочаров В.А. Технология переработки золотосодержащего сырья: учеб. / В.А. Бочаров, В.А. Игнаткина, Д.В. Абрютин. Москва: МИСИС, 2011. 328 с.

https://e.lanbook.com/book/47438

4. Основы рафинирования цветных металлов: учеб. пособие / Г.А. Колобов и др. Москва: МИСИС, 2010. 93 с.

https://e.lanbook.com/book/2059

7.1.3. Учебно-методическое обеспечение

- 1. Металлургические технологии производства и обработки металлов: Методические указания к самостоятельной работе / Сост. Г.В. Петров, С.Б. Фокина. СПб., 2018. 23 с.
- 2. Металлургические технологии производства и обработки металлов: Методические рекомендации по подготовке реферата / Сост. С.Б. Фокина. СПб., 2018. 10 с.
- 3. Металлургические технологии производства и обработки металлов: Методические указания к лабораторным работам / Сост. С.Б. Фокина. СПб., 2018. 46 с.
- 4. Металлургические технологии производства и обработки металлов: Методические указания к практическим занятиям / Сост. С.Б. Фокина. СПб., 2018. 32 с.

7.2. Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная электронная библиотека «Scopus» https://www.scopus.com
- 2. Научная электронная библиотека ScienceDirect: http://www.sciencedirect.com
- 3. Научная электронная библиотека «eLIBRARY»: https://elibrary.ru/
- 4. Поисковые системы Yandex, Google, Rambler, Yahoo и др.
- 5. Электронно-библиотечная система издательского центра «Лань»
- 6. Электронная библиотека Российской Государственной Библиотеки (РГБ):
- 7. Электронная библиотека учебников: http://studentam.net
- 8. Электронно-библиотечная система «ЭБС ЮРАЙТ» www.biblio-online.ru.
- 9. Электронная библиотечная система «Национальный цифровой ресурс «Руконт»»: http://rucont.ru
 - 10. Электронно-библиотечная система «SciTecLibrary»: http://www.sciteclibrary.ru
 - 11. Электронно-библиотечная система «Лань»: https://e.lanbook.com/books

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Материально-техническое оснащение аудиторий

Специализированные аудитории, используемые при проведении занятий лекционного типа, практических занятий, оснащены мультимедийными проекторами и комплектом аппаратуры, позволяющей демонстрировать текстовые и графические материалы.

Лаборатории оснащены химическим оборудованием, реактивами и лабораторными установками, необходимыми для выполнения лабораторных работ по дисциплине «Металлургические технологии производства и обработки металлов».

Мебель лабораторная:

доска аудиторная -1 шт., стол ученический -6 шт., стол для весов -2 шт., тумба для документов -3 шт., шкаф для хранения реактивов -2 шт., стол приборный с большой полкой -4 шт., шкаф для книг -3 шт., стул -13 шт., стол преподавателя -1 шт., шкаф -1 шт., стол-мойка двойной -1 шт.

стол для весов большой -1 шт., стол лабораторный нержавеющий -12 шт., стол приборный без полки -1 шт., шкаф-тумба -1 шт., шкаф вытяжной для нагрев. печи -1 шт., шкаф вытяжной стандартный с водой -2 шт., шкаф для хранения реактивов -2 шт., шкаф платяной -1 шт., табурет -12 шт., стол-мойка с сушилкой -2 шт., стол офисный -2 шт., тумбы для документов -2 шт., технологическая приставка без воды -12 шт., полка с дверцами -6 шт., тумба подкатная -4 шт., стул «ИСО» -3 шт.

Оборудование и приборы:

титровальная установка -1 шт., реактор с мешалкой -1 шт., термостат -2 шт., рН-метрмилливольтметр рН-673.М -1 шт., магнитная мешалка -5 шт., устройство для перемешивания (10 мест) -1 шт., весы лабораторные ВЛР-200 -1 шт., печь трубчатая СНОЛ 0,2/1250 С -1 шт., весы лабораторные -1 шт., сушильный шкаф -1 шт., плакат в рамке под стеклом -4 шт., лабораторная посуда и химические реактивы, огнетушитель -1 шт.

воздуходувка электрическая (550 Вт, производительность. 3,8 м 3 /мин) — 2 шт., микроскоп «Полам P-312» — 1 шт., микроскоп «Полам P-32» — 1 шт.; микроскоп МИМ-5 — 1 шт., твердомер ТБ-5004 — 1 шт., твердомер ТБ-5006 — 2 шт., печь лабораторная — 4 шт., печь лабораторная трубчатая — 1 шт., печь муфельная МИМП-10П — 1 шт., вакуумный насос VR1,5-12 — 3 шт., весы ВЛТ-1500-П 1кг с калибровочной гирей 2к — 1 шт., универсальный твердомер HBRV-187.5 — 1 шт., универсальная лабораторная муфельная печь МИМП-3П — 2 шт., печь трубчатая СНОЛ-0,2/1250 — 2 шт., печь высокотемпературная камерная ПВК-1,6-5 — 1 шт., плакат в рамке под стеклом — 2 шт., лабораторная посуда и химические реактивы; огнетушитель — 1 шт.

Компьютерная техника:

мультимедийный блок – 1 шт.,

моноблок 24" Asus ET2411IUKI – 2 шт. (с возможностью подключения к сети «Интернет»), сканер – HP ScanJet 3500C-1 шт., принтер «Canon LBP-800» - 1 шт.

8.2. Помещения для самостоятельной работы

1. Оснащенность помещения для самостоятельной работы: 13 посадочных мест. Стул — 25 шт., стол — 2 шт., стол компьютерный — 13 шт., шкаф — 2 шт., доска аудиторная маркерная — 1 шт., АРМ учебное ПК (монитор + системный блок) — 14 шт. Доступ к сети «Интернет», в электронную информационно-образовательную среду Университета.

Перечень лицензионного программного обеспечения: Microsoft Windows 7 Professional: ГК № 1464-12/10 от 15.12.10 «На поставку компьютерного оборудования» ГК № 959-09/10 от 22.09.10 «На поставку компьютерной техники» ГК № 447-06/11 от 06.06.11 «На поставку оборудования» ГК № 984-12/11 от 14.12.11 «На поставку оборудования» Договор № 1105-12/11 от 28.12.2011 «На поставку компьютерного оборудования» , Договор № 1106-12/11 от 28.12.2011 «На поставку компьютерного оборудования» ГК № 671-08/12 от 20.08.2012 «На поставку продукции» , Місгоsoft Open License 60799400 от 20.08.2012, Microsoft Open License 48358058 от 11.04.2011, Microsoft Open License 49487710 от 20.12.2011, Microsoft Open License 49379550 от 29.11.2011 ,

Microsoft Office 2010 Standard: Microsoft Open License 60799400 ot 20.08.2012 , Microsoft Open License 60853086 ot 31.08.2012

Kaspersky antivirus 6.0.4.142

8.3. Помещения для хранения и профилактического обслуживания оборудования

1. Центр новых информационных технологий и средств обучения:

Оснащенность: персональный компьютер -2 шт. (доступ к сети «Интернет»), монитор -4 шт., сетевой накопитель -1 шт., источник бесперебойного питания -2 шт., телевизор плазменный Panasonic -1 шт., точка Wi-Fi -1 шт., паяльная станция -2 шт., дрель -5 шт., перфоратор -3 шт., набор инструмента -4 шт., тестер компьютерной сети -3 шт., баллон со сжатым газом -1 шт., паста теплопроводная -1 шт., пылесос -1 шт., радиостанция -2 шт., стол -4 шт., тумба на колесиках -1 шт., подставка на колесиках -1 шт., шкаф -5 шт., кресло -2 шт., лестница -2 шт.

Перечень лицензионного программного обеспечения: Microsoft Windows 7 Professional (Лицензионное соглашение Microsoft Open License 60799400 от 20.08.2012)

Microsoft Office 2010 Professional Plus (Лицензионное соглашение Microsoft Open License 60799400 от 20.08.2012)

Антивирусное программное обеспечение Kaspersky Endpoint Security (Договор № Д810(223)-12/17 от 11.12.17)

8.4. Лицензионное программное обеспечение:

- 1. Microsoft Windows 8 Professional (договор бессрочный ГК № 875-09/13 от 30.09.2013 «На поставку компьютерной техники»)
- 2. Microsoft Office 2007 Standard (договор бессрочный Microsoft Open License 42620959 от 20.08.2007)
- 3. Microsoft Office 2010 Professional Plus (договор бессрочный Microsoft Open License 60799400 от 20.08.2012, договор бессрочный Microsoft Open License 47665577 от 10.11.2010, договор бессрочный Microsoft Open License 49379550 от 29.11.2011)