ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Руководитель ОПОП ВО доцент Ю.В. Ильюшин

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ ДИСЦИПЛИНЫ МЕТОДОЛОГИЯ СИСТЕМНОГО АНАЛИЗА И УПРАВЛЕНИЯ

Уровень высшего образования: Подготовка кадров высшей квалификации

Направление подготовки: 09.06.01 Информатика и вычислительная техника

Направленность (профиль):

формации (промышленность)

Форма обучения: очная

Нормативный срок обучения: 4 года

Составитель: д.физ.-мат.н., профессор И.А. Бригаднов

Дисциплина входит в состав факультативных дисциплин основной профессиональной образовательной программы высшего образования - программы подготовки научно-педагогических кадров в аспирантуре (ОПОП ВО аспирантуры) по направлению подготовки 09.06.01 Информатика и вычислительная техника.

Целью изучения дисциплины «Моделирование систем» является получение будущими специалистами профессиональных знаний, умений и практических навыков в области моделирования систем.

Основные задачи дисциплины:

- изучение теоретических основ и общих методов анализа проектных решений на этапах от разработки спецификаций до завершения отладки и тестирования программного продукта;
- овладение методами выполнения расчетов надежности и качества всех компонент информационной системы;
- изучение стандартов, в т.ч. международных для выполнения расчетов оценки надежности и качества на всех этапах создания программного и информационного обеспечения автоматизированных систем;
- приобретение навыков практического применения полученных знаний; способностей для самостоятельной работы;
- развитие мотивации к самостоятельному повышению уровня профессиональных навыков в области анализа проектных решений.

Самостоятельная работа аспирантов

Самостоятельная работа аспиранта включает:

- тематическую работу с рекомендованной научной литературой;
- самостоятельное изучение разделов дисциплины;
- исследовательскую работу, анализ научных публикаций по теме курса;
- подготовку к зачету.

Самостоятельная работа обучающихся направлена на углубление и закрепление знаний, полученных на лекциях, выработку навыков самостоятельного активного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточному контролю.

Самостоятельная работа аспирантов - планируемая учебная и научно-исследовательская работа аспирантов, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя.

Целью самостоятельной работы аспирантов является овладение фундаментальными и профессиональными знаниями и умениями по профилю будущей специальности.

Основные задачи самостоятельной работы аспирантов

- изучение теоретического курса, углубление и расширение теоретического курса, углубление и расширение теоретической подготовки в области правовой охраны интеллектуальной собственности;
- формирование самостоятельного мышления, способностей к саморазвитию и самореализации;
 - закрепление полученных теоретических знаний и практических умений;
- использование материала, полученного в ходе самостоятельных занятий в процессе ознакомления с нормативной, справочной документацией и специальной литературой.

Основными формами самостоятельной работы аспирантов являются:

- работа с учебной/научной литературой и углубление знаний при решении практических задач;
 - -подготовка к промежуточному к зачету.

Организация самостоятельной работы студентов

Самостоятельная работа студентов - обязательная и неотъемлемая часть учебной работы студента по данной учебной дисциплине. Общие планируемые затраты времени на выполнение всех видов аудиторных и внеаудиторных заданий соответствуют бюджету времени работы студентов, предусмотренному учебным планом по дисциплине в текущем семестре.

Изучение дисциплины производится в тематической последовательности. Практическому занятию, лабораторной работе и самостоятельному изучению материала, как правило, предшествует лекция. На лекции даются указания по организации самостоятельной работы и срокам сдачи заданий или прохождения тестирования.

Работа с книгой

Изучать курс рекомендуется по темам, предварительно ознакомившись с содержанием каждой из них по программе. При первом чтении следует стремиться к получению общего представления об излагаемых вопросах, а также отмечать трудные или неясные моменты. При повторном изучении темы необходимо освоить все теоретические положения, математические зависимости и их выводы, а также принципы составления уравнений реакций. Рекомендуется вникать в сущность того или иного вопроса, но не пытаться запомнить отдельные факты и явления. Изучение любого вопроса на уровне сущности, а не на уровне отдельных явлений способствует более глубокому и прочному усвоению материала.

Для более эффективного запоминания и усвоения изучаемого материала, полезно иметь рабочую тетрадь (можно использовать лекционный конспект) и заносить в нее формулировки законов и основных понятий химии, новые незнакомые термины и названия, формулы и уравнения реакций, математические зависимости и их выводы и т.п. Весьма целесообразно пытаться систематизировать учебный материал, проводить обобщение разнообразных фактов, сводить их в таблицы. Такая методика облегчает запоминание и уменьшает объем конспектируемого материала.

Изучая курс, полезно обращаться и к предметному указателю в конце книги и глоссарию (словарю терминов). Пока тот или иной раздел не усвоен, переходить к изучению новых разделов не следует. Краткий конспект курса будет полезен при повторении материала в период подготовки к зачету.

Изучение курса должно обязательно сопровождаться выполнением упражнений и решением задач. Решение задач — один из лучших методов прочного усвоения, проверки и закрепления теоретического материала.

Консультации

Изучение дисциплины проходит под руководством преподавателя на базе делового сотрудничества. В случае затруднений, возникающих при изучении учебной дисциплины, студентам следует обращаться за консультацией к преподавателю, реализуя различные коммуникационные возможности: очные консультации (непосредственно в университете в часы приема преподавателя), заочные консультации (посредством электронной почты).

Указания к самостоятельной работе по разделам дисциплины

Хотя изучение дисциплины и сопровождается аудиторными занятиями, из общей структуры дисциплины, приведенной в п.1.1. видно, что на самостоятельную работу отводится на 80% больше времени. Поэтому надо понимать, что роль самостоятельной работы над курсом очень значительна.

Самостоятельно работая над материалом курса, следует, в первую очередь, сконцентрировать внимание на содержании ключевых понятий, принципов, терминов и определений, наполняющих дисциплину.

Задания для самостоятельной работы Порядок выполнения работы Требуется изучить следующие темы и ответить на основные вопросы:

Раздел 1. Введение

- 1. Что такое системный анализ?
- 2. Что такое синергетика?
- 3. Что такое аван-проект?
- 4. Что такое критерий качества системы?
- 5. Что такое онтология?

Раздел 2. Анализ проектных решений и управление качеством разработки программного обеспечения

- 1. Какие задачи ставятся перед бизнес-аналитиком?
- 2. Что такое аналитическая модель?
- 3. Что такое принцип иерархии?
- 4. Что такое ранжирование?
- 5. Что такое шкала порядка, шкала абсолютных величин?
- 7. Что такое шкала интервалов, шкала отношений?

Раздел 3. Показатели и характеристики качества ИС, анализ проектных решений на основе критериев качества разработки и использования ИС

- 1. Какие показатели характеризуют качество разработки программного обеспечения?
- 2. Что такое добротность программного обеспечения?
- 3. Что такое мобильность (переносимость) программного обеспечения?
- 4. Что такое удобство (эргономичность) программного обеспечения?
- 5. Что такое надежность программного обеспечения?
- 6. Что такое функциональность программного обеспечения?
- 7. Что такое эффективность программного обеспечения?
- 8. Что такое сопровождаемость программного обеспечения?

Раздел 4. Интегральные метрики оценки сложности ИС и измерительные методы анализа качества программ.

- 1. Что такое целевая функция?
- 2. Что такое векторная оптимизация?
- 3. Что такое множество Парето?
- 4. Что такое кривая безразличия?
- 5. Что такое целевое значение показателя?
- 6. Что такое позитивный показатель?
- 7. Как определяется интегральная метрика технико-экономического совершенства ИС на основе взвешенного степенного среднего?

Раздел 5. Концептуальные основы и математические модели системного анализа проектных решений

- 1. В чем заключается стохастическая оптимизация?
- 2. В чем заключается эвристическое программирование?
- 3. Что такое функция полезности?
- 4. Что такое параметрическая и непараметрическая неопределенность?
- 5. Что такое динамическое программирование?
- 6. Что такое эвристическое программирование?

Раздел 6. Теоретические основы и модели оценки корректности программ и трудоемкости разработки программ

- 1. В чем состоят валидация и верификация программ?
- 2. Какие основные задачи анализа корректности программ?
- 3. Какие существуют модели описания структур программ?
- 4. Какие существуют метрики структурной сложности программ?
- 5. Какие существуют маршруты выполнения программ и их сложность?
- 6. Какие существуют критерии выбора маршрутов?

Раздел 7. Методы анализа надежности, отладчики и методы отладки, тестирования и оценки проектных решений для программных продуктов

- 1. Какие существуют категории тестов для различных объектов тестирования?
- 2. Какие проблемы решает функциональное тестирование?
- 3. В чем заключаются основные понятия надежности?
- 4. Каковы основные методы повышения надежности программ?
- 5. Что такое избыточность?
- 6. Какие основные методы испытания программ?

Раздел 8. Анализ жизненного цикла ИС и роль CASE-средств в обеспечении надежности ИС

- 1. В чем состоит спиральная модель жизненного цикла ИС?
- 2. Какие проблемы решают CASE-средства (Computer Aided Software Engineering)?
- 3. В чем заключается роль репозитория проекта?
- 4. Каковы основные современные средства быстрого проектирования?
- 5. Каковы основные современные средства быстрого тестирования?

Раздел 9. Анализ проектных решений ИС на основе модели зрелых процессов

- 1. В чем состоит спиральная модель жизненного цикла ИС?
- 2. Какие проблемы решают CASE-средства (Computer Aided Software Engineering)?
- 3. В чем заключается роль репозитория проекта?
- 4. Каковы основные современные средства быстрого проектирования?
- 5. Каковы основные современные средства быстрого тестирования?

Примерный перечень вопросов/заданий к диф. зачету:

- 1. Предмет и задачи системного анализа.
- 2. Понятие системотехника.
- 3. Понятие генезис.
- 4. Понятие синергетика.
- 5. Понятие системное проектирование.
- 6. Понятие аван-проект.
- 7. Понятие критерий качества системы.
- 8. Понятие онтология.
- 9. Задачи бизнес-аналитика.

- 10. Понятие о аналитической модели.
- 11. Понятие принцип иерархии.
- 12. Понятие ранжирование.
- 13. Какие этапы включает в себя жизненный цикл системы.
- 14. Понятие шкала порядка, шкала абсолютных величин.
- 15. Понятие шкала интервалов, шкала отношений.
- 16. Понятие метамодель.
- 17. Показатели качества разработки программного обеспечения.
- 18. Понятие добротность программного обеспечения.
- 19. Понятие мобильность (переносимость) программного обеспечения.
- 20. Понятие удобство (эргономичность) программного обеспечения.
- 21. Понятие надежность программного обеспечения.
- 22. Понятие функциональность программного обеспечения.
- 23. Понятие эффективность программного обеспечения.
- 24. Понятие сопровождаемость программного обеспечения.
- 25. Понятие целевая функция.
- 26. Понятие векторная оптимизация.
- 27. Понятие множество Парето.
- 28. Понятие кривая безразличия.
- 29. Понятие целевое значение показателя.
- 30. Понятие позитивный показатель.
- 31. Определение интегральной метрики технико-экономического совершенства ИС.
- 32. В чем заключается стохастическая оптимизация.
- 33. В чем заключается эвристическое программирование.
- 34. Понятие функция полезности.
- 35. Понятие параметрическая и непараметрическая неопределенность.
- 36.Понятие динамическое программирование.
- 37. Понятие эвристическое программирование.
- 38. Валидация и верификация программ.
- 39. Задачи анализа корректности программ.
- 40. Модели описания структур программ.
- 41. Метрики структурной сложности программ.
- 42. Маршруты выполнения программ и их сложность.
- 43. Критерии выбора маршрутов.
- 44. Категории тестов для различных объектов тестирования.
- 45. Основные понятия надежности.
- 46. Каковы основные методы повышения надежности программ.
- 47. Понятие избыточность.
- 48. Основные методы испытания программ.
- 49. Спиральная модель жизненного цикла ИС.
- 50. CASE-средства (Computer Aided Software Engineering).
- 51. Репозиторий проекта.
- 52. Современные средства быстрого проектирования.
- 53. Современные средства быстрого тестирования.

Вид самостоятельной работы: самостоятельное изучение литературы

Изучать учебную дисциплину рекомендуется по темам, предварительно ознакомившись с содержанием каждой из них в программе дисциплины. При теоретическом изучении дисциплины студент должен пользоваться соответствующей литературой. Примерный перечень литературы приведен в рабочей программе.

Для более полного освоения учебного материала студентам читаются лекции по важнейшим разделам и темам учебной дисциплины. На лекциях излагаются и детально

рассматриваются наиболее важные вопросы, составляющие теоретический и практический фундамент дисциплины. В процессе изучения учебной дисциплины студент должен выполнить контрольную работу, целью которой является приобретение практических навыков в области моделирования систем при выборе адекватных объекту, временным масштабам, основным характеристикам процессов и шкалам наблюдений средств автоматизации сбора и анализа данных.

Итоговый продукт: конспект.

Средства и технологии оценки: Собеседование.

Критерии оценивания:

Оценка «отлично» выставляется аспиранту, если в полном объеме изучен курс данной дисциплины и выполнены практические задания;

Оценка «хорошо» выставляется аспиранту, если достаточно полно изучен курс данной дисциплины и выполнены практические задания;

Оценка «удовлетворительно» выставляется аспиранту, если недостаточно полно изучен курс данной дисциплины и выполнены практические задания;

Оценка «неудовлетворительно» выставляется аспиранту, если отсутствуют знания и практические навыки по данной дисциплине.

Вид самостоятельной работы: подготовка к практическим занятиям

Итоговый продукт: отчет о выполнении практических работ; текст решеной задачи.

Средства и технологии оценки: отчет (письменный).

Критерии оценивания:

Оценка «отлично» выставляется аспиранту, если в полном объеме изучен курс данной дисциплины и выполнены практические задания.

Оценка «хорошо» выставляется аспиранту, если достаточно полно изучен курс данной дисциплины и выполнены практические задания.

Оценка «удовлетворительно» выставляется аспиранту, если недостаточно полно изучен курс данной дисциплины и выполнены практические задания.

Оценка «неудовлетворительно» выставляется аспиранту, если отсутствуют знания и практические навыки по данной дисциплине.

Подготовка к зачету

На зачет выносится материал в объеме, предусмотренном рабочей программой учебной дисциплины. Зачет проводится на последнем занятии. Форма зачета может быть устной (по билетам) или письменной (тестирование). Примерный перечень вопросов для подготовки к зачету представлен ниже.

Готовиться к зачету необходимо последовательно, с учетом контрольных вопросов, разработанных преподавателем кафедры. Сначала следует определить место каждого контрольного вопроса в соответствующем разделе темы учебной программы, а затем внимательно прочитать и осмыслить рекомендованные научные работы, соответствующие разделы рекомендованных учебников, конспекты лекций и собственные конспекты, составленные при подготовке к практическим занятиям. Работу над темой можно считать завершенной, если вы сможете ответить на все контрольные вопросы и дать определение понятий по изучаемой теме.

Для обеспечения полноты ответа на контрольные вопросы и лучшего запоминания теоретического материала рекомендуется составлять план ответа на контрольный вопрос. Это позволит сэкономить время для подготовки непосредственно перед зачетом за счет обращения не к литературе, а к своим записям. При подготовке необходимо выявлять наиболее сложные, дискуссионные вопросы с тем, чтобы обсудить их с преподавателем на консультациях. Нельзя ограничивать подготовку к зачету простым повторением изученного материала. Необходимо углубить и расширить ранее приобретенные знания за счет новых идей и положений.

Цель и основные задачи текущего контроля по дисциплине

Текущий контроль имеет целью проверить ход формирования компетенций в соответствии с этапами ее освоения. Текущий контроль осуществляется в ходе учебного процесса и консультирования обучающихся по результатам выполнения самостоятельной работы.

Основными формами текущего контроля знаний являются:

- обсуждение на консультациях вопросов тем и контрольных вопросов (устный ответ);
- участие в дискуссии по наиболее актуальным темам дисциплины (устный ответ).

Критерии оценивания результатов текущего контроля. Критерии оценивания устных ответов обучающихся

Развернутый ответ аспиранта должен представлять собой связное, логически последовательное сообщение на определенную тему, показывать его умение применять определения, правила в конкретных случаях.

При оценке ответа аспиранта необходимо руководствоваться следующими критериями:

- 1) полнота и правильность ответа;
- 2) степень осознанности, понимания изучаемого материала;
- 3) знание терминологии и правильное ее использование;
- 4) соответствие требованиям рабочей программы по дисциплине.

Порядок проведения дифференцированного зачета

Дифференцированный зачет проводится путем написания обучающимися самостоятельных работ, которые затем проверяются преподавателем с выставлением дифференцированных оценок.

Учащийся выполняет письменную работу на одну из предложенных тем. Он должен защитить выполненную работу путем ответов на вопросы, задаваемые преподавателем. Работа в электронном виде и на бумажном носителе хранится на кафедре системного анализа и управления.

Критерии оценок промежуточной аттестации успеваемости по итогам освоения дисциплины

Оценки за выполненные работы выставляются, исходя из следующих критериев:

— **«отлично»** (5): если обучающийся глубоко и прочно усвоил весь программный материал лекций и демонстрирует это, исчерпывающе, последовательно, грамотно и логически стройно его излагает, использует обширный материал разнообразных источников, излагает свою позицию, хорошо ее объясняя и обосновывая;

- **«хорошо»** (4): если обучающийся твердо знает программный материал, не допускает существенных неточностей в его изложении, использует ограниченный круг источников, вместо своей позиции излагает одну из стандартных, не подкрепляя ее хорошо подобранными обоснованиями;
- **«удовлетворительно»** (3): если обучающийся поверхностно усвоил основной материал лекций, не знает деталей, допускает неточности, привлекает мало материала из источников, пользуясь, в основном, стандартными учебниками и формулировками;
- **«неудовлетворительно»** (2): если обучающийся не знает значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет или, по существу, не выполняет задания эссе.

Оценки по результатам защиты выполненных работ объявляются обучающимся и заносятся в зачетную ведомость.

УЧЕБНАЯ ЛИТЕРАТУРА ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Основная литература

1. Вдовин, В. М. Теория систем и системный анализ [Электронный ресурс]: Учебник для бакалавров / В. М. Вдовин, Л. Е. Суркова, В. А. Валентинов. - 3-е изд. - М.: Издательско-торговая корпорация «Дашков и К°», 2013. - 644 с. - ISBN 978-5-394-02139-8.

http://znanium.com/go.php?id=415155

2. Методология и технология имитационных исследований сложных систем: современное состояние и перспективы развития: Моногр./ В.В. Девятков - М.: Вуз. учеб.: ИНФРА-М, 2013. - 448 с.: $60x90\ 1/16$. - (Научная книга). (п) ISBN 978-5-9558-0338-8, 200экз.

http://znanium.com/go.php?id=427491

3. Практикум по методам оптимизации: Практикум / Сдвижков О.А. - М.: Вузовский учебник, НИЦ ИНФРА-М, 2015. - 231 с.: $60x90\ 1/16$ (Переплёт 7БЦ) ISBN 978-5-9558-0372-http://znanium.com/go.php?id=459517

Дополнительная литература

- 4. Спичкина Т.М. НЕКОТОРЫЕ МОДЕЛИ ВЫЧИСЛЕНИЯ СВЕРТКИ / Вестник Удмуртского университета. Серия 1. Математика. Механика. Компьютерные науки, Вып. 2, http://znanium.com/go.php?id=499677
- 5. Анкудинов, Г.И. Математическая логика и теория алгоритмов [Текст] : учеб. пособие / Г.И. Анкудинов, И. Г. Анкудинов, О. А. Петухов. 2-е изд. СПб. : Изд-во СЗТУ, 2003. 103 с. Библиогр.: с. 99-100 (18 назв.). Предм. указ.: с. 100-102. (8 обл.) : 10.00 р.

http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=108&task=set_static_req&bns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=22%2E1%2F%D0%90%20679%2D339390<.>

6. Информационные системы и технологии [Электронный ресурс] : учебник / И. Г. Анкудинов, И. В. Иванова, Е. Б. Мазаков ; ред. Г. И. Анкудинов. - СПб. : Горн. ун-т, 2015. - 259 с. рис., табл. + 1 эл. опт. диск (CD-ROM). - Библиогр.: с. 243-244 (43 назв.). - Предм. указ.: с. 253-258. - ISBN 978-5-94211-729-0 : Б. ц.

http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=374&task=set _static_req&bns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=32%2E973%2E202%D1%8F73%2F%D0%90%2067%2D284263987<.>

ПЕРЕЧЕНЬ РЕСУРСОВ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Европейская цифровая библиотека Europeana: http://www.europeana.eu/portal
- 2. Информационно-издательский центр по геологии и недропользованию Министерства природных ресурсов и экологии Российской Федерации ООО "ГЕОИНФОРММАРК"-http://www.geoinform.ru/
 - 3. Информационно-аналитический центр «Минерал» http://www.mineral.ru/
- 4. КонсультантПлюс: справочно поисковая система [Электронный ресурс]. www.consultant.ru/.
 - 5. Мировая цифровая библиотека: http://wdl.org/ru
 - 6. Научная электронная библиотека «Scopus» https://www.scopus.com
 - 7. Научная электронная библиотека ScienceDirect: http://www.sciencedirect.com
 - 8. Научная электронная библиотека «eLIBRARY»: https://elibrary.ru/ https://e.lanbook.com/books.
 - 9. Поисковые системы Yandex, Google, Rambler, Yahoo и др.
- 10. Система ГАРАНТ: электронный периодический справочник [Электронный ресурс] www.garant.ru/.
 - 11. Термические константы веществ. Электронная база данных,

http://www.chem.msu.su/cgibin/tkv.pl

- 12. Электронно-библиотечная система издательского центра «Лань»
- 13. Электронная библиотека Российской Государственной Библиотеки (РГБ):
- 14. Электронная библиотека учебников: http://studentam.net
- 15. Электронно-библиотечная система «ЭБС ЮРАЙТ» www.biblio-online.ru.
- 16. Электронная библиотечная система «Национальный цифровой ресурс «Руконт»». http://rucont.ru/
 - 17. Электронно-библиотечная система http://www.sciteclibrary.ru/
 - 18. Библиотека ГОСТов www.gostrf.com.
 - 19. Сайт Российской государственной библиотеки. http://www.rsl.ru/
- 20. Сайт Государственной публичной научно-технической библиотеки России. http://www.gpntb.ru/
 - 21. Каталог образовательных интернет ресурсов http://www.edu.ru/modules.php
- 22. Электронные библиотеки: http://www.pravoteka.ru/,http://www.zodchii.ws/, http://www.tehlit.ru/.
- 23. Специализированный портал по информационно-коммуникационным технологиям в образовании http://www.ict.edu.ru.