МАТЕМАТИКА

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Методические указания к самостоятельной работе для студентов всех специальностей и направлений бакалавриата

САНКТ-ПЕТЕРБУРГ 2019

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования Санкт-Петербургский горный университет

Кафедра высшей математики

МАТЕМАТИКА

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Методические указания к самостоятельной работе для студентов всех специальностей и направлений бакалавриата

САНКТ-ПЕТЕРБУРГ 2019 УДК 517.1+517.2(073)

МАТЕМАТИКА. Неопределенный интеграл. Дифференциальные уравнения: Методические указания к самостоятельной работе / Санкт-Петербургский горный университет. Сост.: *Е.Г. Булдакова, В.В. Ивакин, И.А. Лебедев.* СПб, 2019. 64 с.

Методические указания содержат задания для индивидуальной самостоятельной работы студентов на практических занятиях по высшей математике для всех специальностей и направлений подготовки бакалавриата по указанным разделам курса высшей математики.

Научный редактор проф. А.П. Господариков

Рецензенты: кафедра прикладной математики (Санкт-Петербургский государственный университет); проф. С.И. Перегудин (Санкт-Петербургский государственный университет)

© Санкт-Петербургский горный университет, 2019

МАТЕМАТИКА

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Методические указания к самостоятельной работе для студентов всех специальностей и направлений бакалавриата

Сост.: Е.Г. Булдакова, В.В. Ивакин, И.А. Лебедев

Печатается с оригинал-макета, подготовленного кафедрой высшей математики

Ответственный за выпуск *Е.Г. Булдакова* Лицензия ИД № 06517 от 09.01.2002

Подписано к печати 28.10.2019. Формат $60 \times 84/16$. Усл. печ. л. 3,72. Усл.кр.-отт. 3,72. Уч.-изд.л. 3,0. Тираж 75 экз. 3аказ 919. С 306.

Санкт-Петербургский горный университет РИЦ Санкт-Петербургского горного университета Адрес университета и РИЦ: 199106 Санкт-Петербург, 21-я линия, 2

Введение

Задания для индивидуальной самостоятельной работы студентов-бакалавров содержат по 30 вариантов для каждого из двух разделов курса высшей математики второго семестра: неопределенный интеграл и дифференциальные уравнения.

Задания предназначены для использования во время практических занятий при разборе соответствующих разделов и подготовки к написанию контрольных и самостоятельных работ, сдаче коллоквиумов и экзаменов.

Эти индивидуальные задания разбираются и решаются самостоятельно каждым студентом во время практических занятий с использованием лекционного материала при непосредственной консультационной поддержке преподавателя. Разбор и решение этих заданий позволяют студентам уяснить и освоить основные понятия и методы указанных разделов высшей математики.

Такая индивидуальная самостоятельная работа позволяет продуктивно использовать аудиторное время практических занятий для каждого студента.

1. Неопределенный интеграл

Функция F(x) называется первообразной для функции f(x) на отрезке [a,b], если во всех точках этого отрезка F'(x)=f(x). Всякая непрерывная функция f(x) имеет бесконечное множество первообразных функций F(x)+C, где F(x) — какая-либо конкретная первообразная; C — произвольная постоянная.

Множество первообразных для функции f(x) называется неопределенным интегралом

$$\int f(x)dx = F(x) + C.$$

Соответственно, операция нахождения первообразных называется интегрированием.

Задача отыскания первообразной является обратной по отношению

к дифференцированию. Например, если f(x) = x, то $F(x) = \frac{x^2}{2}$, так

как
$$\left(\frac{x^2}{2}\right)' = x$$
. Следовательно, $\int x dx = \frac{x^2}{2} + C$.

Для простейших функций первообразные находят обращением таблицы производных, а для сложных функций используют специальные методы.

Как известно, производные элементарных функций выражаются через элементарные функции, но это неверно для интегралов:

например, интегралы $\int e^{-x^2} dx$, $\int \frac{\sin x}{x} dx$, $\int \frac{dx}{\ln x}$ не выражаются через элементарные функции.

Свойства неопределенного интеграла:

1)
$$(f(x)dx)' = f(x)$$
. Следствие. $d(f(x)dx) = f(x)dx$;

2)
$$\int f'(x)dx = f(x) + C$$
. Следствие. $\int df(x) = f(x) + C$;

3) Если
$$\lambda = \text{const}$$
, то $\int \lambda f(x) dx = \lambda \int f(x) dx$;

4)
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx.$$

Отметим, что операция интегрирования, так же как и операция дифференцирования, не зависит от обозначения переменных, т.е. если $\int f(x)dx = F(x) + C$, то $\int f(t)dt = F(t) + C$.

Рассмотрим простейшие методы интегрирования:

1. Приведение к табличным интегралам с использованием тождественных преобразований и свойств интегралов покажем на примерах:

$$\int \frac{x-2}{\sqrt{x}} dx = \int \left(\sqrt{x} - \frac{2}{\sqrt{x}}\right) dx = \int \sqrt{x} dx - 2\int \frac{dx}{\sqrt{x}} =$$

$$= \int x^{\frac{1}{2}} dx - 2\int x^{-\frac{1}{2}} dx =$$

$$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} - 2\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + C = \frac{2}{3}x^{\frac{3}{2}} - 4x^{\frac{1}{2}} + C;$$

$$\int \frac{dx}{2x^2 + 3} = \frac{1}{2} \int \frac{dx}{x^2 + \frac{3}{2}} = \left| a^2 = \frac{3}{2}, \Rightarrow a = \sqrt{\frac{3}{2}} \right| =$$

$$= \frac{1}{2} \frac{1}{\sqrt{\frac{3}{2}}} \arctan \frac{x}{\sqrt{\frac{3}{2}}} + C = \frac{1}{\sqrt{6}} \arctan \frac{x\sqrt{2}}{\sqrt{3}} + C;$$

$$\int \frac{dx}{\sqrt{4 - 3x^2}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{\frac{4}{3} - x^2}} = \left| a^2 = \frac{4}{3}, \Rightarrow a = \frac{2}{\sqrt{3}} \right| =$$

$$= \frac{1}{\sqrt{3}} \arcsin \frac{x\sqrt{3}}{2} + C.$$

2. Многие интегралы можно привести к табличным, если применить метод подведения под знак дифференциала, т.е. формулу дифференциала f'(x)dx = df(x) в эквивалентной форме $\varphi(x)dx = df(x)$

 $=d(\int \varphi(x)dx)$, где функция $\varphi(x)$ как бы «подводится» под знак дифференциала. Следующие частные случаи подведения под дифференциал необходимо запомнить наизусть:

$$xdx = \frac{1}{2}d(x^{2}); \ e^{x} dx = d(e^{x}); \ x^{2} dx = \frac{1}{3}d(x^{3}); \frac{dx}{x} = d(\ln x);$$
$$\frac{dx}{x^{2} + 1} = d(\arctan x); \ \frac{dx}{\sqrt{1 - x^{2}}} = d(\arcsin x); \ \cos x dx = d(\sin x);$$
$$\sin x dx = -d(\cos x); \frac{dx}{\cos^{2} x} = d(\operatorname{tg} x); \frac{dx}{\sin^{2} x} = -d(\operatorname{ctg} x).$$

Приведем примеры:

$$\int \frac{dx}{x \ln x} = \int \frac{d(\ln x)}{\ln x} = |t = \ln x| = \int \frac{dt}{t} = \ln|t| + C = \ln|\ln x| + C;$$

$$\int \frac{e^x}{e^{2x} - 9} = \int \frac{d(e^x)}{e^{2x} - 9} = |t = e^x| = \int \frac{dt}{t^2 - 9} = |a = 3| =$$

$$= \frac{1}{2 \cdot 3} \ln \left| \frac{t - 3}{t + 3} \right| + C = \frac{1}{6} \ln \left| \frac{e^x - 3}{e^x + 3} \right| + C;$$

$$\int \frac{x dx}{\sin(2 - 3x^2)} = \frac{1}{2} \int \frac{d(x^2)}{\sin(2 - 3x^2)} = \frac{1}{2 \cdot (-3)} \int \frac{d(-3x^2)}{\sin(2 - 3x^2)} =$$

$$= -\frac{1}{6} \int \frac{d(2 - 3x^2)}{\sin(2 - 3x^2)} = |t = 2 - 3x^2| = -\frac{1}{6} \int \frac{dt}{\sin t} =$$

$$= -\frac{1}{6} \operatorname{tg} \frac{t}{2} + C = -\frac{1}{6} \operatorname{tg} \frac{2 - 3x^2}{2} + C,$$

$$\text{где } dx = d(x + C) \text{ и } dx = \frac{1}{C} d(Cx);$$

$$\int \frac{\sin x \operatorname{tg} \ln \cos x}{\cos x} dx = -\int \frac{\operatorname{tg} \ln \cos x}{\cos x} d(\cos x) = |t - \cos x| = -\int \frac{\operatorname{tg} \ln t}{t} dt =$$

$$= -\int \operatorname{tg} \ln \operatorname{td}(\ln t) = |y - \sin t| = -\int \operatorname{tg} y dy = \ln|\cos y| + C =$$

$$= \ln|\cos \ln t| + C = \ln|\cos \ln \cos x| + C.$$

3. Во втором способе мы ввели новую переменную, но только в качестве обозначения, чтобы привести интеграл к табличному относительно новой переменной. В этом случае под дифференциалом уже было получено нужное выражение. В общем случае, когда подведение под дифференциал невозможно или не приводит к желаемому результату, можно применить метод замены переменной, если $x = \varphi(t)$ и $\varphi(t)$, $\varphi'(t)$, f(x) — непрерывны, то

$$\int f(x)dx = \int f[\varphi(t)]d\varphi(t) = \int f[\varphi(t)]\varphi'(t)dt.$$

Основная идея: если некоторое выражение (не слишком громоздкое) усложняет интеграл, то следует попробовать принять это выражение за новую переменную. Замена переменной включает три подготовительных этапа: 1) ввести новую переменную; 2) выразить старую переменную; 3) найти дифференциал старой переменной. После этого производят замену всех выражений под знаком интеграла.

Пример 1. Найти
$$\int \frac{xdx}{(2x+1)^3}.$$

Решение. Подведение под дифференциал $xdx = \frac{1}{2}d(x^2)$ не приводит к успеху, так как в знаменателе стоит (2x+1). Интеграл усложняет то, что в знаменателе двучлен (2x+1), а делить легко на одночлен! Поэтому попробуем принять t = 2x+1. Тогда имеем

$$x = \frac{t-1}{2}$$
, $\Rightarrow dx = \left(\frac{t-1}{2}\right)' dt = \frac{1}{2} dt$.

Следовательно, получим

$$\int \frac{xdx}{(2x+1)^3} = \int \frac{\frac{t-1}{2} \frac{1}{2} dt}{t^3} = \frac{1}{4} \int \frac{t-1}{t^3} dt = \frac{1}{4} \int \left(\frac{1}{t^2} - \frac{1}{t^3}\right) dt =$$

$$= \frac{1}{4} \int (t^{-2} - t^{-3}) dt = \frac{1}{4} \left(\frac{t^{-1}}{-1} - \frac{t^{-2}}{-2}\right) + C = \frac{1}{4} \left(\frac{-1}{t} + \frac{1}{2t^2}\right) + C =$$

$$= \frac{1}{4} \left(\frac{-1}{2x+1} + \frac{1}{2(2x+1)^2}\right) + C.$$

Интегрирование по частям основано на следующем утверждении: если u = u(x), v = v(x), u' и v' – непрерывны, то имеет место формула

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

✓ Замечание. Если $dv = \varphi(x)dx$, то $v' = \varphi(x)$ и $v = \int \varphi(x)dx$. Так как v – любая первообразная, то обычно произвольную постоянную в v опускают (ее ставят после окончания интегрирования).

Интегрирование по частям удобно в том случае, если $\int v du$ находится проще, чем $\int u dv$. Ситуация такова для двух классов интегралов:

- 1. $\int P_n(x) \varphi(x) dx$, где $P_n(x)$ многочлен и $\varphi(x)$ тригонометрическая или показательная функция, причем $u = P_n(x)$ и $dv = \varphi(x) dx$, а интегрирование по частям применяют столько раз, какова степень многочлена;
- 2. $\int g(x)\phi(x)dx$, где $\int g(x)dx$ легко находится, а $\phi(x)$ обратная тригонометрическая или логарифмическая функция, причем $u=\phi(x)$ и dv=g(x)dx.

Пример 2. Найти $\int x^2 \cos 2x dx$.

Решение. Запишем

$$\int x^2 \cos 2x dx = \begin{vmatrix} u = x^2, \Rightarrow & du = 2x dx \\ dv = \cos 2x dx, \Rightarrow & v = \frac{1}{2} \int \cos 2x d(2x) = \frac{1}{2} \sin 2x \end{vmatrix} =$$

$$= \frac{x^2}{2} \sin 2x - \int x \sin 2x dx = \begin{vmatrix} u = x, \Rightarrow & du = dx \\ dv = \sin 2x dx, \Rightarrow & v = -\frac{1}{2} \cos 2x \end{vmatrix} =$$

$$= \frac{x^2}{2} \sin 2x - \left(-\frac{x}{2} \cos 2x + \frac{1}{2} \int \cos 2x dx \right) =$$

$$= \frac{x^2}{2} \sin 2x + \frac{x}{2} \cos 2x - \frac{1}{4} \sin 2x + C.$$

Пример 3. Найти $\int x \ln(x-1) dx$.

Решение. Имеем

$$\int x \ln(x-1) dx = \begin{vmatrix} u = \ln(x-1), \Rightarrow & du = \frac{dx}{x-1} \\ dv = x dx, \Rightarrow & v = \int x dx = \frac{x^2}{2} \end{vmatrix} =$$

$$= \frac{x^2}{2} \ln|x-1| - \frac{1}{2} \int \frac{x^2}{x-1} dx = \frac{x^2}{2} \ln|x-1| - \frac{1}{2} \int \frac{(x^2-1)+1}{x-1} dx =$$

$$= \frac{x^2}{2} \ln|x-1| - \frac{1}{2} \int \frac{x^2-1}{x-1} dx - \frac{1}{2} \int \frac{dx}{x-1} =$$

$$= \frac{x^2}{2} \ln|x-1| - \frac{1}{2} \int (x+1) dx - \frac{1}{2} \ln|x-1| =$$

$$= \frac{x^2}{2} \ln|x-1| - \frac{1}{2} \left(\frac{x^2}{2} + x\right) - \frac{1}{2} \ln|x-1| + C.$$

Кроме того, интегрирование по частям применяется для специального приема приведения интеграла к самому себе. Например,

$$\int \sqrt{a^2 - x^2} \, dx = \begin{vmatrix} u = \sqrt{a^2 - x^2}, \Rightarrow du = \frac{-2x dx}{2\sqrt{a^2 - x^2}} = \frac{-x dx}{\sqrt{a^2 - x^2}} \\ dv = dx, \Rightarrow v = \int dx = x \end{vmatrix} = \frac{-x dx}{\sqrt{a^2 - x^2}} = \frac{-x dx}{\sqrt{a^2$$

$$= x\sqrt{a^2 - x^2} - \int \frac{-x^2 dx}{\sqrt{a^2 - x^2}} = x\sqrt{a^2 - x^2} - \int \frac{(a^2 - x^2) - a^2}{\sqrt{a^2 - x^2}} dx =$$

$$= x\sqrt{a^2 - x^2} - \int \left(\sqrt{a^2 - x^2} - \frac{a^2}{\sqrt{a^2 - x^2}}\right) dx =$$

$$= x\sqrt{a^2 - x^2} - \int \sqrt{a^2 - x^2} dx + a^2 \arcsin\frac{x}{a} + C.$$

Таким образом, получим

$$\int \sqrt{a^2 - x^2} \, dx = x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} - \int \sqrt{a^2 - x^2} \, dx + C, \Rightarrow$$

$$\Rightarrow 2\int \sqrt{a^2 - x^2} \, dx = x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} + C, \Rightarrow$$

$$\Rightarrow \int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left(x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right) + C,$$

где в силу произвольности C вместо C/2 снова пишем C. **Пример 4.** Найти $\int e^{-2\sqrt{x}} dx$.

Решение. Сделаем замену $t = \sqrt{x}, \Rightarrow x = t^2, \Rightarrow dx = 2tdt$:

$$\int e^{-2\sqrt{x}} dx = \int e^{-2t} 2t dt = 2 \int t e^{-2t} dt = \begin{vmatrix} u = t, \Rightarrow du = 1 dt \\ dv = e^{-2t} dt, \Rightarrow \end{vmatrix} = v = \int e^{-2t} dt = \frac{e^{-2t}}{-2} = 2 \left(\frac{t e^{-2t}}{-2} - \int \frac{e^{-2t}}{-2} dt \right) = 2 \left(\frac{t e^{-2t}}{-2} + \frac{1}{2} \int e^{-2t} dt \right) = 2 \left(\frac{t e^{-2t}}{-2} + \frac{1}{2} \frac{e^{-2t}}{-2} \right) + C = 2 \left(\frac{\sqrt{x} e^{-2\sqrt{x}}}{-2} - \frac{1}{4} e^{-2\sqrt{x}} \right) + C = -\sqrt{x} e^{-2\sqrt{x}} - \frac{1}{2} e^{-2\sqrt{x}} + C.$$

Варианты заданий.

Вариант 1

$$\begin{array}{cccc}
1 & \int \frac{x dx}{(3x^2 - 2)^5} & 2 & \int \frac{e^{-2ctgx}}{\sin^2 x} dx \\
3 & \int \sin^2 x \cdot \cos^3 x \cdot dx & 4 & \int (8x - 1)e^{2x} dx
\end{array}$$

5
$$\int (2x+5)\ln x \cdot dx$$
 6 $\int \frac{x+1}{x^2-2x+3} dx$

$$7 \int \frac{4x+3}{x^3+6x^2+9x} dx \qquad 8 \int \frac{dx}{3 \cdot \sqrt[3]{x}+6 \cdot \sqrt[4]{x}}$$

$$9 \quad \int \cos^2 2x \cdot dx \qquad \qquad 10 \quad \int \frac{dx}{6\cos^2 x - 1}$$

$$11 \quad \int \frac{dx}{3\cos x + 4\sin x - 1}$$

$$1 \int \frac{xdx}{(3x^2+2)^4}$$

$$2 \int \frac{\sqrt[3]{tgx+3}}{\cos^2 x} dx$$

$$3 \int \cos^2 x \cdot \sin^3 x \cdot dx \qquad 4 \int (3x-4)\cos 2x dx$$

$$4 \int (3x-4)\cos 2x dx$$

5
$$\int (x^2 + 5x) \ln x \cdot dx$$
 6 $\int \frac{(x-3)dx}{x^2 + x + 7}$

$$6 \int \frac{(x-3)dx}{x^2+x+7}$$

$$7 \int \frac{x+3}{(x^3+9x)x} dx \qquad 8 \int \frac{dx}{\sqrt[3]{x} - \sqrt[4]{x}}$$

$$8 \quad \int \frac{dx}{\sqrt[3]{x} - \sqrt[4]{x}}$$

$$9 \quad \int \sin^4 5x \cdot dx$$

$$9 \int \sin^4 5x \cdot dx \qquad 10 \int \frac{dx}{5\cos^2 x + 3}$$

$$11 \quad \int \frac{dx}{4\cos x - 3 + \sin x}$$

$$1 \int \sqrt[5]{3x-7} \, dx$$

$$2 \int \frac{ctg(tgx)}{\cos^2 x} dx$$

$$3 \int \sin^2 x \cdot \cos x \cdot dx \qquad 4 \int (x+1)e^{-4x} dx$$

$$4 \int (x+1)e^{-4x}dx$$

$$5 \quad \int (x^3 + x) \ln x \cdot dx$$

5
$$\int (x^3 + x) \ln x \cdot dx$$
 6 $\int \frac{(3x-1)dx}{x^2 - 3x + 9}$

$$7 \int \frac{x-2}{(x^3+9x)(x+3)} dx \qquad 8 \int \frac{dx}{\sqrt{x+2} - \sqrt[4]{x+2}}$$

$$8 \int \frac{dx}{\sqrt{x+2} - \sqrt[4]{x+2}}$$

$$9 \quad \int \sin^4 2x \cdot dx$$

$$10 \quad \int \frac{dx}{4\cos^2 x - 3}$$

$$11 \quad \int \frac{dx}{3\cos x + 1 - \sin x}$$

$$1 \quad \frac{xdx}{(8x^2-3)^5}$$

$$2 \int \frac{dx}{x\sqrt{1+\ln^2 x}}$$

$$3 \int \sqrt[3]{\sin x} \cdot \cos x \cdot dx$$

$$3 \int \sqrt[3]{\sin x} \cdot \cos x \cdot dx \qquad \qquad 4 \int (2x-1)\cos 10x dx$$

$$\int x^5 \cdot \ln x \cdot dx$$

$$6 \int \frac{(x-1)dx}{x^2+x+3}$$

$$7 \int \frac{dx}{x^4 + 2x^2}$$

$$8 \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$

9
$$\int \cos^4 3x \cdot dx$$

$$10 \quad \int \frac{dx}{2\cos^2 x + 3}$$

$$11 \quad \int \frac{dx}{3\sin x - 2\cos x}$$

$$1 \int \frac{xdx}{\sqrt[3]{2x^2-3}}$$

$$2 \int \frac{e^{-2ctgx}}{\sin^2 x} dx$$

$$3 \int \frac{\cos x dx}{\sqrt{\sin x}}$$

$$4 \int (2x-1)\sin x dx$$

$$\int x^4 \ln x \cdot dx$$

6
$$\int \frac{(x+1)dx}{x^2-6x+13}$$

$$7 \int \frac{2x+5}{x^4+8x^2} dx$$

$$8 \int \frac{dx}{\sqrt{x} + 2 \cdot \sqrt[3]{x}}$$

$$9 \quad \int \cos^4 2x \cdot dx$$

10
$$\int \frac{dx}{\cos^2 x + 3}$$

$$11 \quad \int \frac{dx}{2\sin x - 3\cos x}$$

$$1 \quad \int \frac{dx}{\sqrt[5]{3x+7}}$$

$$2 \int \frac{e^{-tgx}}{\cos^2 x} dx$$

$$3 \int \frac{\sin x dx}{\sqrt{1 + 2\cos x}}$$

$$4 \int (3x+1)\sin 2x dx$$

$$5 \int (x^3 + x) \ln x \cdot dx$$

6
$$\int \frac{(x-2)dx}{x^2+4x+3}$$

$$7 \quad \int \frac{x+1}{x^4 + 3x^2} dx$$

$$8 \quad \int \frac{dx}{2 \cdot \sqrt{x} - \sqrt[3]{x}}$$

$$9 \quad \int \cos^6 x \cdot dx$$

10
$$\int \frac{dx}{\cos^2 x + 2}$$

$$11 \quad \int \frac{dx}{\sin x + 2\cos x}$$

$$1 \int e^{-6x-2} dx$$

$$2 \int \frac{tg(tgx)}{\cos^2 x} dx$$

$$3 \int \frac{\sin x dx}{\sqrt{2 - \cos^2 x}}$$

$$4 \int (2x-9)\cos 5x dx$$

5
$$\int (x^2 - 3x) \ln x \cdot dx$$
 6 $\int \frac{(3x + 7)dx}{x^2 + 3x + 5}$

6
$$\int \frac{(3x+7)dx}{x^2+3x+5}$$

$$7 \int \frac{x+3}{x^3+2x^2} dx$$

$$8 \int \frac{dx}{5 \cdot \sqrt{x+1} - 4 \cdot \sqrt[4]{x+1}}$$

$$9 \quad \int \sin^4 3x \cdot dx$$

$$10 \quad \int \frac{dx}{3 + 5\sin^2 x}$$

$$11 \quad \int \frac{dx}{3\cos x - 2\sin x + 3}$$

$$1 \int \sin(2x-5)dx$$

$$2 \int \frac{\sqrt{1+2tg^2x}}{\cos^2 x} dx$$

$$\int \frac{\cos x dx}{\sqrt{3-\sin^2 x}}$$

$$4 \int (2x-4)\sin 3x dx$$

$$\int (x^2 + 6x) \ln x \cdot dx$$
 6 $\int \frac{(2x-3)dx}{x^2-4x+8}$

6
$$\int \frac{(2x-3)dx}{x^2-4x+8}$$

$$7 \int \frac{x-1}{x^4+3x^2} dx$$

$$8 \int \frac{dx}{5 \cdot \sqrt{x} - 4 \cdot \sqrt[4]{x}}$$

$$9 \quad \int \sin^6 x \cdot dx$$

$$10 \int \frac{dx}{3+4\sin^2 x}$$

11
$$\int \frac{dx}{4\cos x - \sin x + 2}$$

$$1 \int \cos(4x-2)dx$$

1
$$\int \cos(4x-2)dx$$
 2 $\int \frac{e^x dx}{(4+3e^x)^4}$

$$3 \int \frac{\cos x dx}{4 - \sin^2 x}$$

$$4 \int (2x-1)\sin\frac{x}{3}dx$$

5
$$\int (x^3 - 2x) \ln 3x \cdot dx$$
 6 $\int \frac{(2x+1)dx}{x^2 - 5x + 7}$

6
$$\int \frac{(2x+1)dx}{x^2-5x+7}$$

$$7 \int \frac{x+2}{x^3-4x^2} dx$$

$$8 \int \frac{dx}{5\sqrt{x} + \sqrt[4]{x}}$$

9
$$\int \cos^2 x \cdot \sin^2 x \cdot dx$$
 10 $\int \frac{dx}{3 + 2\sin^2 x}$

$$10 \quad \int \frac{dx}{3 - 2\sin^2 x}$$

$$11 \quad \int \frac{dx}{4\cos x - 5\sin x + 1}$$

$$1 \quad \int \frac{dx}{\cos^2(3x+1)}$$

$$2 \int \frac{e^x dx}{(4-5e^x)^3}$$

$$3 \int \frac{\sin x dx}{1-\cos x}$$

$$4 \int (5x-4)e^{2x}dx$$

$$\int (x^4 - 3x^2) \ln x \cdot dx$$
 6 $\int \frac{(x-3)dx}{x^2 - 8x + 7}$

6
$$\int \frac{(x-3)dx}{x^2-8x+7}$$

$$7 \int \frac{2x+3}{x^3+4x^2+x^4} dx \qquad 8 \int \frac{dx}{\sqrt{x}-3 \cdot \sqrt[3]{x}}$$

$$8 \int \frac{dx}{\sqrt{x} - 3 \cdot \sqrt[3]{x}}$$

$$9 \quad \int \sin^2 4x \cdot dx$$

$$10 \int \frac{dx}{3 + 2\sin^2 x}$$

$$11 \quad \int \frac{dx}{4\cos x - 3\sin x + 1}$$

$$1 \quad \int \frac{dx}{\sin^2(3x-1)}$$

$$2 \int \frac{e^x dx}{(3-2e^x)^3}$$

$$3 \int \frac{\sin x dx}{2 - \cos^2 x}$$

$$4 \int (2x-9)\sin 8x dx$$

5
$$\int (x^3 + 8x^2) \ln x \cdot dx$$
 6 $\int \frac{(3x-1)dx}{x^2 - 6x + 13}$

6
$$\int \frac{(3x-1)dx}{x^2-6x+13}$$

$$7 \quad \int \frac{x+3}{x^4+7x^2} dx$$

$$8 \int \frac{dx}{3 \cdot \sqrt{x} + 2 \cdot \sqrt[3]{x}}$$

9
$$\int \sin^4 3x \cdot dx$$

$$10 \int \frac{dx}{3+4\sin^2 x}$$

$$11 \quad \int \frac{dx}{3\cos x - \sin x + 1}$$

$$1 \int \frac{dx}{\sin^2(8x-7)}$$

$$2 \int x^2 t g(x^3 + 3) dx$$

$$\int \cos^3 x \cdot \sin x \cdot dx$$

$$4 \int (7x-3)e^{-2x}dx$$

$$5 \int (3x-1)\ln x \cdot dx \qquad \qquad 6 \int \frac{xdx}{x^2-2x+5}$$

$$6 \int \frac{xdx}{x^2 - 2x + 5}$$

7
$$\int \frac{x+4}{x^3+2x^2+x^4} dx$$
 8 $\int \frac{dx}{\sqrt{x}-2\cdot \sqrt[4]{x}}$

$$8 \quad \int \frac{dx}{\sqrt{x} - 2 \cdot \sqrt[4]{x}}$$

$$9 \quad \int \sin^2 2x \cdot dx$$

$$10 \int \frac{dx}{2+5\sin^2 x}$$

$$11 \quad \int \frac{dx}{3\cos x + \sin x + 1}$$

1
$$\int \sqrt{3x-1} dx$$

$$2 \int x^3 \cos(x^4 - 2) dx$$

$$3 \quad \int \cos^4 x \cdot \sin x \cdot dx \qquad \qquad 4 \quad \int (3x-1)e^{-3x} dx$$

$$4 \int (3x-1)e^{-3x}dx$$

5
$$\int (7x-1) \ln x \cdot dx$$
 6 $\int \frac{(x+3)dx}{x^2-8x+15}$

6
$$\int \frac{(x+3)dx}{x^2 + 15}$$

$$7 \int \frac{2x-3}{x^4+5x^2} dx$$

$$8 \int \frac{dx}{\sqrt{x} + 4 \cdot \sqrt[3]{x}}$$

$$9 \quad \int \cos^4 \frac{x}{4} \cdot dx$$

$$10 \quad \int \frac{dx}{2-3\sin^2 x}$$

$$11 \quad \int \frac{dx}{2\cos x + \sin x + 1}$$

$$1 \int \sqrt[3]{4x+5} dx$$

$$2 \quad \int \cos x \cdot tg(\sin x) dx$$

$$3 \quad \int \cos^5 x \cdot \sin x \cdot dx$$

$$3 \quad \int \cos^5 x \cdot \sin x \cdot dx \qquad \qquad 4 \quad \int (2x-1)\sin 9x dx$$

$$5 \int (9x-1)\ln x \cdot dx \qquad \qquad 6 \int \frac{xdx}{x^2-2x+4}$$

$$6 \quad \int \frac{x dx}{x^2 - 2x + 4}$$

7
$$\int \frac{2x+5}{(x^3+4x^2+8x)x} dx$$
 8 $\int \frac{dx}{2 \cdot \sqrt[3]{x+1} - \sqrt{x+1}}$

$$8 \int \frac{dx}{2 \cdot \sqrt[3]{x+1} - \sqrt{x+1}}$$

$$9 \quad \int \cos^4 \frac{x}{3} \cdot dx$$

$$9 \quad \int \cos^4 \frac{x}{3} \cdot dx \qquad \qquad 10 \quad \int \frac{dx}{1 - 3\sin^2 x}$$

11
$$\int \frac{dx}{\cos x + \sin x + 2}$$

$$1 \int \sqrt[5]{6x-3} dx$$

$$2 \quad \int \cos^6 x \cdot \sin x \cdot dx$$

$$3 \int \frac{\sqrt{2\ln x + 1}}{x} \cdot dx \qquad 4 \int (7x - 3)e^{-4x} dx$$

$$4 \int (7x-3)e^{-4x}dx$$

5
$$\int (4x+3) \ln x \cdot dx$$
 6 $\int \frac{(x-7)dx}{x^2+8x+7}$

6
$$\int \frac{(x-7)dx}{x^2+8x+7}$$

$$\int \frac{x+4}{x^4+4x^3+16x^2} dx$$

7
$$\int \frac{x+4}{x^4+4x^3+16x^2} dx$$
 8 $\int \frac{dx}{\sqrt{2x+5}-\sqrt[3]{2x+5}}$

$$9 \quad \int \sin^4 \frac{x}{3} \cdot dx$$

$$9 \quad \int \sin^4 \frac{x}{3} \cdot dx \qquad \qquad 10 \quad \int \frac{dx}{2\cos^2 x + 1}$$

$$11 \quad \int \frac{dx}{\sin x + \cos x + 1}$$

$$1 \quad \int \frac{dx}{\sin^2(8x+6)}$$

$$2 \int \frac{arcctgx}{1+x^2} dx$$

$$3 \int \frac{\cos x dx}{\sqrt{4 - \sin^2 x}}$$

$$4 \quad \int (3x+8)\sin 3x dx$$

5
$$\int (x^4 - 3x^3) \ln x \cdot dx$$
 6 $\int \frac{(2x - 9)dx}{x^2 - 3x + 5}$

$$6 \int \frac{(2x-9)dx}{x^2-3x+5}$$

$$7 \int \frac{x^2 - 3}{x^4 + 4x^3 + 8x^2} dx$$

$$7 \int \frac{x^2 - 3}{x^4 + 4x^3 + 8x^2} dx \qquad 8 \int \frac{dx}{4\sqrt{1 - x} - \sqrt[3]{1 - x}}$$

$$9 \quad \int \sin^2 7x \cdot dx$$

$$10 \quad \int \frac{dx}{\cos^2 2x + 3}$$

$$11 \quad \int \frac{dx}{4\sin x - 1}$$

$$1 \int \frac{dx}{3\cos^2(3x-1)} \qquad 2 \int \frac{\arccos x}{\sqrt{1-x^2}} dx$$

$$2 \int \frac{\arccos x}{\sqrt{1-x^2}} dx$$

$$3 \int \sin^6 x \cdot \cos x \cdot dx \qquad 4 \int (4x-9)e^{-3x} dx$$

$$4 \int (4x-9)e^{-3x}dx$$

5
$$\int (x^5 - 3x^2) \ln x \cdot dx$$
 6 $\int \frac{(x+3)dx}{x^2 - 7x + 9}$

6
$$\int \frac{(x+3)dx}{x^2-7x+9}$$

$$7 \int \frac{x-4}{x^4+2x^3+9x^2} dx = 8 \int \frac{dx}{3\sqrt{3x-1}-\frac{3}{3}\sqrt{3x-1}}$$

$$8 \int \frac{dx}{3 \cdot \sqrt{3x-1} - \sqrt[3]{3x-1}}$$

$$9 \quad \int \sin^4 \frac{x}{2} \cdot dx \qquad \qquad 10 \quad \int \frac{dx}{\cos^2 x + 4}$$

$$10 \quad \int \frac{ax}{\cos^2 x + 4}$$

$$11 \quad \int \frac{dx}{2\sin x + 5}$$

$$1 \int \frac{dx}{(8x-7)^2}$$

$$2 \int \frac{arctg^3x}{1+x^2} dx$$

$$3 \quad \int \cos^8 x \cdot \sin x \cdot dx$$

$$4 \int (3x-7)e^{-2x}dx$$

$$\int (x+10) \ln x \cdot dx$$

6
$$\int \frac{(3x-10)dx}{x^2-10x+17}$$

$$7 \int \frac{x^2 + 2}{x^4 + 4x^2} dx$$

$$8 \quad \int \frac{dx}{4 \cdot \sqrt{x} - \sqrt[4]{x}}$$

$$9 \quad \int \cos^2 12x \cdot dx$$

$$10 \quad \int \frac{dx}{4\cos^2 x + 2}$$

$$11 \quad \int \frac{dx}{2\sin x + 3\cos x}$$

$$1 \quad \int \frac{dx}{(8x+7)^{10}}$$

$$2 \int 4^x \sin(4^x + 3) dx$$

$$3 \int \cos^{10} x \cdot \sin x \cdot dx \qquad 4 \int (4x-9)e^{-5x} dx$$

$$4 \int (4x-9)e^{-5x}dx$$

$$5 \quad \int (x^6 - x) \ln x \cdot dx$$

5
$$\int (x^6 - x) \ln x \cdot dx$$
 6 $\int \frac{(3x - 9)dx}{x^2 - 6x + 18}$

$$7 \int \frac{x-3}{x^4+2x^2} dx$$

$$8 \int \frac{dx}{3 \cdot \sqrt{x} - 4 \cdot \sqrt[3]{x}}$$

$$9 \quad \int \cos^2 10x \cdot dx$$

$$10 \quad \int \frac{dx}{3\cos^2 x - 6}$$

$$11 \quad \int \frac{dx}{4\cos x - 5\sin x}$$

$$1 \quad \int \frac{dx}{\sqrt[5]{6x-1}}$$

$$2 \int e^x \cdot ctg(2e^x - 1)dx$$

$$3 \int \cos^9 x \cdot \sin x \cdot dx \qquad 4 \int (2x-3)\cos 6x dx$$

$$4 \int (2x-3)\cos 6x dx$$

$$5 \int (4x-1)\ln x \cdot dx \qquad \qquad 6 \int \frac{xdx}{x^2+7x-1}$$

$$6 \int \frac{xdx}{x^2 + 7x - 1}$$

7
$$\int \frac{3x+1}{(x^3+6x^2+10x)x} dx$$
 8 $\int \frac{dx}{2 \cdot \sqrt{x} + \sqrt[4]{x}}$

$$8 \quad \int \frac{dx}{2 \cdot \sqrt{x} + \sqrt[4]{x}}$$

9
$$\int \cos^2(3x+1) \cdot dx$$
 10 $\int \frac{dx}{5+4\sin^2 x}$

$$10 \int \frac{dx}{5 + 4\sin^2 x}$$

11
$$\int \frac{dx}{3\sin x - \cos x}$$

$$1 \quad \int \frac{dx}{\sqrt[7]{3x+8}}$$

$$2 \int e^{2x} \cdot tg(e^{2x}) dx$$

$$3 \int \cos^{11} x \cdot \sin x \cdot dx \qquad 4 \int (2x-1)\cos 5x dx$$

$$4 \int (2x-1)\cos 5x dx$$

$$5 \int (4x+1)\ln x \cdot dx \qquad \qquad 6 \int \frac{xdx}{x^2+6x-1}$$

$$6 \int \frac{xdx}{x^2 + 6x - 1}$$

7
$$\int \frac{4x-5}{(x^3-6x^2+8x)x} dx$$
 8 $\int \frac{dx}{\sqrt{4x-1}-\sqrt[3]{4x-1}}$

$$\int \frac{dx}{\sqrt{4x-1}-\sqrt[3]{4x-1}}$$

$$9 \quad \int \cos^2 3x \cdot dx$$

$$10 \int \frac{dx}{5 + 3\sin^2 x}$$

$$11 \quad \int \frac{dx}{4\sin x - 3\cos x}$$

1
$$\int \frac{dx}{(4x-1)^4}$$
 2 $\int \frac{e^{-tgx}}{\cos^2 x} dx$
3 $\int \cos^3 x \cdot \sin^7 x \cdot dx$ 4 $\int (7x+2)\sin 2x dx$
5 $\int (3x=1)\ln(x+1) \cdot dx$ 6 $\int \frac{x dx}{x^2 - 2x + 5}$
7 $\int \frac{4x-1}{(x^3 + 4x^2 + 9x)x} dx$ 8 $\int \frac{dx}{3 \cdot \sqrt{x} - 2 \cdot \sqrt[4]{x}}$
9 $\int \sin^4 7x \cdot dx$ 10 $\int \frac{dx}{6\cos^2 x + 5}$
11 $\int \frac{dx}{5\sin x - 4\cos x + 3}$

$$1 \int \sqrt[5]{3x-7} dx$$

$$2 \int \frac{ctg(2tgx)}{\cos^2 x} dx$$

$$3 \int \sin^2 x \cdot \cos x \cdot dx \qquad 4 \int (x+1)e^{-4x} dx$$

$$4 \int (x+1)e^{-4x}dx$$

$$\int (x^3 + 7x) \ln x \cdot dx$$
 6 $\int \frac{3x - 1}{x^2 - 3x + 9} dx$

$$\int \frac{3x-1}{x^2-3x+9} dx$$

7
$$\int \frac{x-2}{(x^3+9x)(x+3)} dx$$
 8 $\int \frac{dx}{\sqrt{x+2}-\sqrt[4]{x+2}}$

$$8 \quad \int \frac{dx}{\sqrt{x+2} - \sqrt[4]{x+2}}$$

$$9 \quad \int \sin^4 2x \cdot dx$$

$$10 \int \frac{dx}{4\cos^2 x - 3}$$

11
$$\int \frac{dx}{3\cos x + 1}$$

$$1 \int \sqrt[7]{3x+1} dx$$

$$2 \int \frac{\sqrt{ctgx-1}}{\sin^2 x} dx$$

$$3 \int \sqrt{\sin x} \cdot \cos x dx$$

$$4 \int (4x+5)\cos 3x dx$$

$$5 \int (3x+7)\ln x \cdot dx \qquad \qquad 6 \int \frac{xdx}{x^2-5x+4}$$

$$6 \int \frac{xdx}{x^2 - 5x + 4}$$

$$7 \int \frac{x+1}{(x^3+4x)x} dx$$

$$8 \int \frac{dx}{\sqrt{x+1} + \sqrt[3]{x+1}}$$

9
$$\int \cos^4 3x \cdot dx$$

$$10 \quad \int \frac{dx}{3\cos^2 x + 4}$$

$$11 \quad \int \frac{dx}{4\sin 2x + 3\cos 2x}$$

2. Дифференциальные уравнения

 \mathcal{A} ифференциальным уравнением называется уравнение, связывающее независимую переменную x, искомую функцию $y=\varphi(x)$ и ее производные $y',y'',...,y^{(n)}$. Дифференциальное уравнение имеет вид

$$F(x, y, y', y'', \dots y^{(n)}) = 0$$
.

Отметим, что порядок старшей производной определяет порядок уравнения.

дифференциального Решением уравнения называется дифференцируемая функция $y = \varphi(x)$, раз n которая подстановке в уравнение обращает его в тождество. Так, например, дифференциальное уравнение, описывающее движение материальной точки под действием силы упругости, имеет вид $y'' + \omega^2 y = 0$ при $\omega = \tilde{n}$ inst .

Проверим, что функция $y_1=C_1\cos\omega x+C_2\sin\omega x$ при любых значениях постоянных C_1 и C_2 является решением данного уравнения. Имеем $y'=-C_1\omega\sin\omega x+C_2\omega\cos\omega x$, $y''=-C_1\omega^2\cos\omega x-C_2\omega^2\sin\omega x$. После подстановки в искомое дифференциальное уравнение получим тождество:

$$-C_1\omega^2\cos\omega x - C_2\omega^2\sin\omega x + \omega^2(C_1\cos\omega x + C_2\sin\omega x) = 0.$$

Общим решением дифференциального уравнения первого порядка называется дифференцируемая функция $y = \varphi(x, C)$, которая при любом значении произвольной постоянной C является решением данного уравнения. Решения, получающиеся из общего решения $y = \varphi(x, C)$ при определенном значении произвольной постоянной C, называются частными.

Задача нахождения частного решения, удовлетворяющего начальному условию $y=y_0$ при $x=x_0$ (или $y\Big|_{x=x_0}=y_0$), называется

задачей Коши.

Если общее решение получено в неявном виде $\varphi(x,y,C)=0$, то последнее равенство называется *общим интегралом* дифференциального уравнения, а равенство $\varphi(x,y,C)=0$ — *частным интегралом*.

Пример 1. Найти частный интеграл уравнения $(x^2 - 1)y' =$,

$$=2x\sqrt{y}$$
 удовлетворяющий начальному условию $\left. y \right|_{x=-\sqrt{2}}=1$.

Решение. Непосредственной подстановкой можно убедиться, что равенство вида

$$2\sqrt{y} - \ln |x^2 - 1| = C$$

является общим интегралом данного уравнения. Подставим $x = -\sqrt{2}$ и y = 1 в это равенство:

$$2\sqrt{1} - \ln\left|\left(\sqrt{2}\right)^2 - 1\right| = C,$$

т.е. C = 2. Таким образом, частный интеграл исходного уравнения имеет вид

$$2\sqrt{y} - \ln \left| x^2 - 1 \right| = 2.$$

Геометрически общее решение (общий интеграл) дифференциального уравнения представляет собой семейство *интегральных кривых* на плоскости *Оху*; частное решение (частный интеграл) задает одну кривую из этого семейства.

Общий вид дифференциального уравнения первого порядка

$$F(x, y, y') = 0.$$
 (1)

Разрешив уравнение (1) относительно y', получим уравнение первого порядка в нормальной форме

$$y' = f(x, y). (2)$$

Учитывая, что $y' = \frac{dy}{dx}$, дифференциальное уравнение (2) можно записать в симметричном виде

$$P(x, y)dx + Q(x, y)dy = 0,$$

где P(x, y), Q(x, y) – известные функции.

Общее решение дифференциального уравнения первого порядка содержит одну произвольную постоянную.

Уравнение первого порядка вида

$$f_1(x)f_2(y)dx + \varphi_1(x)\varphi_2(y)dy = 0$$
 (3)

называется уравнением с разделяющимися переменными.

Умножив уравнение (3) на $\frac{1}{f_2(y)\phi_1(x)} (f_2(y) \cdot \phi_1(x) \neq 0)$, получим

уравнение с *разделенными переменными*:

$$rac{f_1(x)}{\phi_1(x)}dx + rac{\phi_2(y)}{f_2(y)}dy = 0,$$
 или $M(x)dx + N(y)dy = 0,$

почленно интегрируя которое, найдем общий интеграл уравнения (3):

$$\int \frac{f_1(x)}{\varphi_1(x)} dx + \int \frac{\varphi_2(y)}{f_2(y)} dy = C.$$

Пример 2. Найти решение уравнения

$$x(1+y^2)dx + y(1+x^2)dy = 0,$$

удовлетворяющее начальному условию y(0) = 1.

Решение. Разделим переменные в данном уравнении

$$\frac{xdx}{1+x^2} + \frac{ydy}{1+y^2} = 0.$$

Почленно интегрируем

$$\int \frac{xdx}{1+x^2} + \int \frac{ydy}{1+y^2} = C,$$

получим

$$\frac{1}{2}\ln(1+x^2) + \frac{1}{2}\ln(1+y^2) = \ln C_1 \text{ (áåðåì} \quad C = \ln C_1).$$

Отсюда

$$(1+x^2)(1+y^2) = C_1^2$$
.

Удовлетворяем начальному условию: $(1+0^2)(1+1^2) = C_1^2$, тогда $C_1^2 = 2$ и уравнение искомой интегральной кривой имеет вид

$$(1+x^2)(1+y^2)=2.$$

Если переменные разделить не удается, то следует проверить, не является ли уравнение однородным. Для этого необходимо привести его к виду

$$M(x, y)dx + N(x, y)dy = 0$$

и определить, являются ли функции M(x,y) и N(x,y) однородными одной степени или нет. Напомним, что функция $\varphi(x,y)$ является однородной степени n, если для любого $\lambda \neq 0$ имеет место равенство $\varphi(\lambda x, \lambda y) = \lambda^n \varphi(x,y)$. Если уравнение приводится к виду y' = f(x,y) или $x' = \widetilde{f}(x,y)$, то оно будет однородным в том случае, когда

$$f(x,y) = g\left(\frac{y}{x}\right)$$
 или $\widetilde{f}(x,y) = \widetilde{g}\left(\frac{x}{y}\right)$ – однородная функция нулевой

степени. Метод решения основан на введении новой искомой функции $\frac{y}{x} = \frac{x}{x}$

$$u(x) = \frac{y}{x}$$
 èëè $u(y) = \frac{x}{y}$: $y = ux$, $y' = u'x + u$ или $x = yu$, $x' = u + yu'$ и

после замены в уравнении всегда разделяются переменные.

Пример 3. Решить уравнение $(x^2 + y^2) dx = 2xydy$ и найти интегральную кривую, проходящую через точку A(4; 0).

Решение. Очевидно, что $M(x,y) = x^2 + y^2$ и N(x,y) = -2xy однородные функции второй степени. Используем подстановку $y = u(x) \cdot x$. Тогда y' = u'x + u. Следовательно, получим

$$y' = \frac{x^2 + y^2}{2xy}$$
; $u'x + u = \frac{1 + u^2}{2u}$.

Разделим переменные:

$$\frac{dx}{x} = \frac{2u}{1 - u^2} du .$$

После интегрирования запишем

$$\ln |x| = -\ln |1 - u^2| + \ln |2C|$$

или, взяв $(\pm \tilde{N}) = \tilde{N}$, получим

$$\ln |x(1-u^2)| = \ln |2C|; \quad x \cdot \left(1 - \frac{y^2}{x^2}\right) = \pm 2C;$$
$$x^2 - y^2 = 2Cx.$$

Окончательно общий интеграл $(x-C)^2 - y^2 = C^2$ и определяет семейство гипербол. С учетом начального условия, т.е. y(4) = 0 (кривая проходит через точку A), вычислим C:

$$4^2 - 0^2 = 2C \cdot 4$$
 и $C = 2$.

Дифференциальное уравнение первого порядка называется nинейным, если оно линейно относительно искомой функции и ее производной. Общий вид линейного уравнения: y' + p(x)y = q(x).

Одним из способов решения такого уравнения является использование подстановки y = u(x)v(x) (метод Бернулли).

Пример 4. Решить уравнение $y' - y \operatorname{tg} x = \sin x$.

Решение. Очевидно, что данное уравнение является линейным: $p(x) = - \lg x, \ q(x) = \sin x$. Тогда ищем решение в виде $y = u(x) \cdot v(x)$; y' = u'v + uv'.

Подставляя эти выражения в уравнение, получим

$$u'v + uv' - \operatorname{tg} x \cdot uv = \sin x;$$

$$(u' - \operatorname{tg} x \cdot u)v + uv' = \sin x.$$
(4)

Так как уравнение одно, а неизвестных функций две, то одна из них, например функция u(x) свободная, поэтому можно на нее наложить дополнительное условие: $u' - \operatorname{tg} x \cdot u = 0$. Разделим переменные в последнем уравнении, тогда при $(\pm \tilde{N}) = \tilde{N}$ имеем

$$\frac{du}{u} = \operatorname{tg} x dx;$$

$$\ln |u| = -\ln|\cos x| + \ln C, \Rightarrow |u| = \frac{C}{|\cos x|}, \Rightarrow u = \frac{\pm C}{\cos x}.$$

Таким образом, $u = C/\cos x$. Так как необходимо, чтобы любая функция u = u(x) удовлетворяла уравнению $u' - \operatorname{tg} x \cdot u = 0$, то полагаем $u = 1/\cos x$ (C = 1). Тогда из уравнения (4) получим

$$\frac{1}{\cos x}v' = \sin x; \quad v' = \sin x \cos x; \quad v = \frac{1}{2}\sin^2 x + C.$$

Итак,
$$y = \frac{1}{\cos x} \left(C + \frac{1}{2} \sin^2 x \right)$$
.

Отметим, что использование подстановки y = uv для решения линейного дифференциального уравнения первого порядка приводит к формуле вида (формула Бернулли):

$$y = e^{-\int p(x)dx} \left[C + \int q(x) e^{\int p(x)dx} dx \right].$$
 (5)

Рассмотрим уравнение вида

$$y' + p(x)y = q(x)y^n, (6)$$

где n — любое действительное число, кроме нуля и единицы (при n = 0 имеем линейное уравнение, а при n = 1 — уравнение с разделяющимися переменными). Уравнение (6) называется **уравнением Бернулли**, и метод его решения основан на замене $z = y^{1-n}$, что сводит его к линейному уравнению. Отметим, что для решения уравнения Бернулли можно использовать и метод Бернулли **Пример 5.** Решить уравнения:

1.
$$y' + \frac{y}{x} = -xy^2$$
. 2. $y'(2x - y^2) = 1$.

Решение. 1. Здесь $p(x) = \frac{1}{x}$, q(x) = -x, n = 2. Положим $z = y^{1-2} = y^{-1}$,

подставляя $y=z^{-1}$ и $y'=-z'/z^2$ в исходное уравнение, получим

$$z' - \frac{z}{x} = x .$$

Воспользовавшись формулой (5), где $p(x) = -x^{-1}$, q(x) = x, находим

$$z = e^{+\int \frac{dx}{x}} \left[C + \int x e^{-\int \frac{dx}{x}} dx \right] = x \left[C + \int dx \right] = x \left(C + x \right).$$

Общее решение данного уравнения имеет вид

$$y = z^{-1} = (x^2 + Cx)^{-1}$$
.

2. Это уравнение линейно относительно функции x(y). Так как $y'_x = \frac{1}{x'_y}$, то оно примет вид

$$x' = 2x - y^2$$
 или $x' - 2x = -y^2$.

Здесь p(y) = -2, $q(y) = -y^2$. Используя формулу (5), получим

$$x = e^{2y} (C - \int y^2 e^{-2y} dy).$$

Дважды интегрируя по частям, получим

$$\int y^2 e^{-2y} dy = -\frac{1}{2} e^{-2y} \left(y^2 + y + \frac{1}{2} \right).$$

Таким образом, общим решением данного уравнения является функция:

$$x = Ce^{2y} + \frac{1}{2}y^2 + \frac{1}{2}y + \frac{1}{4}$$

Варианты заданий.

1.
$$y' \sin x = y \ln y$$
;

2.
$$xy + y^2 = (2x^2 + xy)y'$$
;

3.
$$y' - x^3 y = x^7$$
;

4.
$$y' = \frac{x}{y}e^{2x} + y$$
;

5.
$$y'' - \frac{2}{x}y' = x^5$$
;

6.
$$y'' = e^{2y}$$
;

7.
$$y'' + 4y' + 13y = 2x - 1 + e^{-2x}$$
;

8.
$$y'' - 2y' + y = (x^3 + 1)e^x - \sin 2x$$
 (коэффициенты не вычислять)

1.
$$y' = (2x - 1)$$

$$2. y' = \frac{y}{x} + \frac{x}{y};$$

3.
$$y' - 2x^2y = x^5$$
;

4.
$$y' + 2y = 3e^x y^4$$
;

5.
$$y'' + \frac{3}{x}y' = \sqrt[3]{x}$$
;

6.
$$2(y')^2 = (y-1)y''$$
;

7.
$$y'' - 8y' + 17y = x + 1 - 2e^{-x}$$
;

8.
$$y'' + 2y' + y = (x^2 + 1)e^{-x}\sin x + 2e^{-x}$$
 (коэффициенты не вычислять)

1.
$$x(y^6 + 1) + y^2y'(x^4 + 1) = 0$$

2.
$$(xy'-y)\cos^2\frac{y}{x} + x = 0;$$

3.
$$x^2y' - 2xy + x^3 = 0$$
;

4.
$$y' + 2\frac{y}{x} + \sqrt{y} = 0$$
;

5.
$$xy'' - y' = 2x^2e^x$$
;

6.
$$(y^2 - 1)y'' + 2(y')^2 = 0$$
;

7.
$$y'' - 8y' + 17y = 10e^{2x} - x^2$$
;

8.
$$y'' + 6y' + 9y = e^{3x} \cos 3x - xe^{-3x}$$
 (коэффициенты не вычислять)

1.
$$y'\sqrt{1-x^2} - \cos^2 y = 0$$

2.
$$xy' - y = (x + y) \ln \frac{x + y}{x}$$
;

3.
$$y' + x^4 y = x^9$$
;

4.
$$y' - \frac{y}{x} = x^2 \sqrt{y}$$
;

5.
$$y''ctgx + y' = 2$$
;

6.
$$2yy'' = (y')^2$$
;

7.
$$y'' - 2y' + 10y = e^x - 2x^2$$
;

8.
$$y'' + 4y' + 4y = x \sin 3x - e^{-2x}$$
 (коэффициенты не вычислять)

$$1. (1+e^y)dx = e^x dy$$

2.
$$xy' - y = \frac{x}{arctg \frac{y}{x}}$$
;

3.
$$y' + xy = x^3$$
;

4.
$$y' + \frac{2}{x}y = e^x \sqrt{y}$$
;

5.
$$xy'' = y' + 2$$
;

6.
$$1 + (y')^2 + 2yy'' = 0$$
;

7.
$$y'' + 4y' + 5y = x^2 - 1 + e^{-x}$$
;

8.
$$y'' - 6y' + 5y = (x^3 + x)e^x - \sin x$$
 (коэффициенты не вычислять)

1.
$$y' - 3x^4(y^2 + 1) = 0$$
;

2.
$$y' - \frac{y}{x} = \frac{1}{\frac{y}{x} + \frac{y^2}{x^2}}$$
;

3.
$$y' + \frac{2}{x}y = \frac{3}{x^2}$$
;

4.
$$y' - 2xy = x^3y^3$$
;

5.
$$y'' - \frac{y'}{x} = 1$$
;

6.
$$2yy'' = 1 + (y')^2$$
;

7.
$$y'' + 4y' + 8y = 2x - 1 + e^{-2x}$$
;

8.
$$y'' + 6y' + 8y = x\sin x + x^2\cos x + e^{-2x}$$
 (коэффициенты не вычислять)

1.
$$y' + \sin x(y^2 + 2y + 2) = 0$$
;

2.
$$y' - \frac{y}{x} = \frac{x^2}{y^2 - x^2}$$
;

3.
$$y' - \frac{2}{x}y = \frac{1}{x^2}$$
;

4.
$$y' + 3xy = xy^2$$
;

5.
$$y'' - \frac{y'}{x} = x^2 - 2$$
;

6.
$$y'' = 2y'y$$
;

7.
$$y'' - 4y' + 8y = x + 4 - e^x$$
;

8.
$$y'' + 2y' - 8y = x\cos 2x - \sin 2x + e^{2x}$$
 (коэффициенты не вычислять)

1.
$$(y^2 + 3)dx - \frac{e^x}{x}ydy = 0$$
;

2.
$$2x - y + (x + y)y' = 0$$
;

3.
$$y' + 2x^2y = 3x^5$$
;

4.
$$y' + 2y = xy^3$$
;

5.
$$y'' + \frac{3}{x}y' = x^4$$
;

6.
$$y'' + yy' = 0$$
;

7.
$$y'' + 6y' + 10y = e^{-x} + 2x^2 - 2$$
;

8.
$$y'' + 2y' - 3y = (x+2)e^{-2x} \sin 3x - 2e^x$$
 (коэффициенты не вычислять)

1.
$$y' = (2y + 1)tgx$$

2.
$$x^2y' = y(x+y)$$
;

3.
$$y' - x^2y = 2x^5$$
;

4.
$$y' - 2y = 2e^x y^3$$
;

5.
$$y'' - \frac{3}{x}y' = \sqrt{x}$$
;

6.
$$(y')^2 + yy'' = 0$$
;

7.
$$y'' - 6y' + 10y = x^2 - 2x + e^{2x}$$
;

8.
$$y'' + 4y' - 5y = xe^x \cos 3x - e^x$$
 (коэффициенты не вычислять)

1.
$$y' = e^{x+y} + e^{x-y}$$
;

2.
$$\left(\sin\frac{y}{x} - \frac{x}{y}\cos\frac{y}{x}\right)xy' = x\cos\frac{y}{x} + y\sin\frac{y}{x}$$
;

3.
$$x^2y' - 3xy = -x^3$$
;

4.
$$y' + \frac{y}{2} + y^3 = 0$$
;

5.
$$x(y'' + 1) + y' = 0$$
;

6.
$$(\frac{1}{4} - y^2)y'' = (y')^2$$
;

7.
$$y'' - 2y' = (4x + 4)e^{2x}$$
;

8.
$$y'' + 4y' + 4y = (x^3 + 1)\cos 2x + \sin 2x + 3e^{-2x}$$
 (коэффициенты не вычислять)

1.
$$y' - 2x^3(y^2 + 1) = 0$$

$$2. xy' - y = x \sin^2 \frac{y}{x};$$

3.
$$y' - \frac{y}{x} = x^2 e^x$$
;

4.
$$y' + 2xy = x^3y^3$$
;

5.
$$y'' + 2y' = 3x^2$$
;

6.
$$(y'')^2 + (y')^2 = 1$$
;

7.
$$y'' + 3y' = 3e^{-3x}$$
;

8.
$$y'' + 4y' + 4y = (x^2 + 1)e^{-x}\cos 2x + e^{-2x}$$
 (коэффициенты не вычислять)

1.
$$y' = \frac{1 - x^2}{1 + y^2}$$

$$2. xy' = y \ln \frac{y}{x};$$

3.
$$y' + x^2 y = x^5$$
;

4.
$$xy' - 3y = x^3y^2$$
;

5.
$$y'' - \frac{y'}{x+1} = x(x+1)$$
;

6.
$$y'' - y^2(y')^3 = 0$$
;

7.
$$y'' + 3y' + 3y = e^x + 10 - 6x$$
;

8.
$$y'' + 6y' + 9y = x^2 e^x \sin 4x - e^{-3x}$$
 (коэффициенты не вычислять)

1.
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$

2.
$$y' - \frac{y}{x} = \frac{y^2 - x^2}{x^2}$$
;

3.
$$xy' - y = x^2 e^{-2x}$$
;

4.
$$xy' + 3y = xy^2$$
;

5.
$$2xy'' = (y')^2 - 4$$
;

6.
$$yy'' - (y')^2 = 0$$
;

7.
$$y'' - 2y' + y = 4e^x$$
;

8.
$$y'' + 6y' - 7y = xe^{2x} \sin 2x + x^3$$
 (коэффициенты не вычислять)

1.
$$y' = \frac{1+x^2}{1+v^2}$$
;

$$2. y + \sqrt{xy} = xy';$$

3.
$$y' + 4x^4y = x^9$$
;

4.
$$xy' + 4y = xy^3$$
;

5.
$$2xy''y' = (y')^2 + 16$$
;

6.
$$y'' + 2y(y')^3 = 0$$
;

7.
$$y'' + y' = 2x - 1 + e^x$$
;

8.
$$y'' - 6y' + 9y = (x^3 - 2x)e^{3x} - \sin x$$
 (коэффициенты не вычислять

1.
$$y' \sin y = \sqrt{x^2 - 1}$$

2.
$$x^2y' + y^2 = xyy'$$
;

3.
$$y' + xy = 3x^3$$
;

4.
$$y' + xy = x^3y^3$$
;

5.
$$y'' + \frac{xy'}{1-x^2} = x$$
;

6.
$$y''y \ln y + (y')^2 = 0$$
;

7.
$$y'' + y' - 6y = (6x + 1)e^{3x} - e^{2x}$$
;

8.
$$y'' - 2y' + y = (x^2 + 1)e^x \sin 2x + 3e^x$$
 (коэффициенты не вычислять)

1.
$$\cos yy' = 2\sqrt{4 + x^2}$$

2.
$$y^2 - 2xy + x^2y' = 0$$
;

3.
$$y' - xy = 2x^3$$
;

4.
$$y' - ytgx + y^2 \cos x = 0$$
;

5.
$$y'' + \frac{xy'}{x^2 + 1} = x$$
;

6.
$$y(y+1)y'' + (y')^2 = 0$$
;

7.
$$y'' + 2y' - 3y = (x + 2)e^{2x} - e^{x}$$
;

8.
$$y'' + 6y' + 9y = x^2 e^{-x} \cos 4x - e^{-3x}$$
 (коэффициенты не вычислять)

$$1. e^{x+3y} dy = x dx$$

2.
$$(x^2 - 2xy)y' = xy - y^2$$
;

3.
$$y' + x^3 y = x^7$$
;

4.
$$y' - \frac{3}{x}y = x^4y^2$$
;

5.
$$y'' + \frac{2}{x}y' = x^2 + 1$$
;

6.
$$2(y')^2 = yy''$$
;

7.
$$y'' - 2y' + 10y = 2x - 3 + e^{-x}$$
;

8.
$$y'' + 8y' + 16y = (x^3 + 4)e^{-4x} + \cos 3x$$
 (коэффициенты не вычислять)

1.
$$y' = \sin^2 y \cos^2 x$$
;

$$2. xy'\sin\frac{y}{x} + x = y\sin\frac{y}{x};$$

3.
$$(x+1)y' + y = x^3 + x^2$$
;

4.
$$y' + 4y + \sqrt[4]{y} = 0$$
;

5.
$$y''tgx = y' + 1$$
;

$$6. y'' = \frac{y'}{\sqrt{y}};$$

7.
$$y'' - 5y' + 6y = 3\sin 2x - \cos 2x + x$$
;

8.
$$y'' - 2y' + 17y = xe^{-x}\cos 4x - x^2$$
 (коэффициенты не вычислять)

$$1. y' = \frac{\sin^2 y}{\cos^2 x};$$

2.
$$y'(2x^2 + xy) = xy + y^2$$

3.
$$xy' - 2y + x^2 = 0$$
;

4.
$$y' - \frac{y}{x} + 3y^2 = 0$$
;

5.
$$2xy''y' = (y')^2 - 4$$
;

6.
$$4(y'')^2 = 1 + (y')^2$$
;

7.
$$y'' - 4y' + 3y = 2\sin x + e^x$$
;

8.
$$y'' + 6y' + 10y = (x^2 \cos x + x \sin x)e^{-3x}$$
 (коэффициенты не вычислять)

$$1. \frac{y}{y'} = x \ln y;$$

2.
$$y' = 4 + \frac{y}{x} + \frac{y^2}{x^2}$$
;

3.
$$y' - y = e^x$$
;

4.
$$y' - \frac{y}{x} = y^3$$
;

5.
$$y'' = y' + x$$
;

6.
$$y''(1+y) = (y')^2 + y'$$
;

7.
$$y'' - 6y' + 8y = 3e^{3x} + e^{2x}$$
;

8.
$$y'' + 4y' + 5y = x^2 e^{-2x} \sin x$$
 (коэффициенты не вычислять)

1.
$$y'\sqrt{1+x^2} - \sin^2 y = 0$$

2.
$$xy' = y - xe^{-\frac{y}{x}}$$
;

3.
$$y' - x^4 y = x^9$$
;

4.
$$y' + \frac{2}{x}y = x^3y^2$$
;

5.
$$(y'' + 1)(x - 1) = 3y'$$
;

6.
$$2y'' = 3y^{-2}$$
;

7.
$$y'' + 2y' + 10y = 3e^x - 3x^2$$
;

8.
$$y'' - y' - 2y = xe^{3x}\cos x + \sin x - e^{2x}$$
 (коэффициенты не вычислять)

1.
$$(1 + e^{3y})xdx = e^{3y}dy$$
;

2.
$$2\sqrt{xy} - y = xy'$$
;

3.
$$xy' + y = \sin x$$
;

4.
$$y' - 3y = e^{2x}y^3$$
;

5.
$$xy'' = y' + x^2$$
;

6.
$$yy'' + (y')^2 = y'$$
;

7.
$$y'' - 6y' + 9y = x^2 + e^{3x}$$
;

8.
$$y'' + 4y' + 13y = xe^{-2x}\cos 3x$$
 (коэффициенты не вычислять)

$$1. y' = \frac{e^{2x}}{\ln y};$$

2.
$$y^2 - 2xy = x^2y'$$
;

3.
$$(x^2-1)y'-xy=x^3-x$$
;

4.
$$y' + 2y = e^x y^2$$
;

5.
$$y'' + \frac{1}{x}y' = 0$$
;

6.
$$y''y + (y')^2 = y'$$
;

7.
$$y'' - 4y' + 4y = x^2 - 2 + e^{2x}$$
;

8.
$$y'' + 6y' + 10y = xe^{-3x} \sin x + +x + 2$$
 (коэффициенты не вычислять)

1.
$$\frac{yy'}{x} + e^y = 0$$
;

$$2. xy' - y = xtg\frac{y}{x};$$

3.
$$xy' - y = x^2 \sin x$$
;

4.
$$y' + 2xy = 2xy^3$$
;

5.
$$y''x \ln x = 3y'$$
;

6.
$$y'' = y'e^y$$
;

7.
$$y'' + 6y' + 9y = 3\cos 2x + e^{-3x}$$
;

8.
$$y'' - 8y' + 7y = x^2 e^x \sin 2x + e^x$$
 (коэффициенты не вычислять)

1.
$$(x^2 - 1)y' = 2xy \ln y$$

2.
$$xy' + x\cos\frac{y}{x} - y + x = 0$$
;

3.
$$y' - \frac{4}{x}y = \sqrt{x}$$
;

4.
$$y' - 3y = (x+3)y^2$$
;

5.
$$y'' + \frac{2}{x}y' = x^4$$
;

6.
$$y''y^3 = 1$$
;

7.
$$y'' - 6y' + 9y = 2\sin x + e^{3x}$$
;

8.
$$y'' + 4y' + 4y = (x^2 + 3)e^{-2x} + x$$
 (коэффициенты не вычислять)

1.
$$\frac{1}{x(y-1)} + \frac{y'}{y(x+2)} = 0$$
;

2.
$$xy' = xe^{\frac{y}{x}} + y + x$$
;

3.
$$y' - \frac{2}{x}y = 3\sqrt{x}$$
;

4.
$$y' + 3y = (x + 2)y^2$$
;

5.
$$y'' + \frac{3}{x}y' = x^2$$
;

6.
$$y''tgy = (y')^2$$
;

7.
$$y'' + 4y' - 5y = 2e^x - x + 1$$
;

8.
$$y'' - 8y' + 16y = x^2 e^{4x} - e^{-x} \cos 3x$$
 (коэффициенты не вычислять)

1.
$$x(y^2 + 1) + y^2y'(x^2 + 1) = 0$$

2.
$$(xy'-y)\sin^2\frac{y}{x} + x = 0;$$

3.
$$xy' - 2y + x^2 = 0$$
;

4.
$$y' + \frac{3y}{x} = -y^2x$$
;

5.
$$xy'' - y' = x^2 e^x$$
;

6.
$$y^2y'' + y' = 0$$
;

7.
$$y'' - y' - 6y = 5e^{3x} + x$$
;

8.
$$y'' + 10y' + 25y = x^2e^{-5x} + xe^{-x}\cos x$$
 (коэффициенты не вычислять)

$$1. xydx + \frac{dy}{\ln y}(x+1) = 0$$

$$2. xy' - y = xtg\frac{y}{x};$$

3.
$$y' + \frac{3y}{x} = x$$
;

4.
$$xy' - y = x^2y^2$$
;

5.
$$y'' + \frac{y'}{x} = xy^3$$
;

6.
$$yy'' + 2y' = 0$$
;

7.
$$y'' + 6y' + 9y = e^{-3x} + 2x$$
;

8.
$$y'' + 2y' + 5y = x^2 e^{-x} \sin 2x$$
 (коэффициенты не вычислять)

1.
$$y' = y^2 \sin^2 x$$

2.
$$y' - \frac{y}{x} = e^{\frac{y}{x}}$$
;

$$3. y' + \frac{2y}{x} = x;$$

4.
$$y' + \frac{y}{x} = x^2 y^3$$
;

5.
$$(x+1)y'' = y'$$
;

6.
$$y'' = 4yy'$$
;

7.
$$y'' - 4y' + 4y = x - 2 + e^{2x}$$
;

8.
$$y'' + 9y = 2\cos 3x - \sin 3x + x^2$$
 (коэффициенты не вычислять)

1.
$$xy' = y^2 + 2y$$
;

$$2. y' = \frac{x+y}{y};$$

3.
$$y' - ytgx = \frac{1}{\cos x}$$
;

4.
$$xy' - 2y = x^2y^3$$
;

5.
$$xy'' - y' = 0$$
;

6.
$$y''y + (y')^2 = 0$$
;

7.
$$y'' - 3y' - 4y = 2e^{-x} + 2x^2$$
;

8.
$$y'' + 8y' + 16y = xe^{-4x} + 2\sin x - x\cos x$$
 (коэффициенты не вычислять)

Библиографический список

1. Высшая математика. Том 3. Элементы высшей алгебры. Интегральное исчисление функций одной переменной и его приложения [Электронный ресурс]: Учебник/ А.П. Господариков [и др.]. — Электрон. текстовые данные. — СПб.: Санкт-Петербургский горный университет, 2015. — 102 с.

http://www.bibliocomplectator.ru/book/?id=71689

Том Высшая математика. 4. Дифференциальные уравнения. Ряды. Рялы Фурье преобразование И Дифференциальное и интегральное исчисление функций нескольких переменных. Теория поля [Электронный ресурс]: А.П. Господариков [и др.]. – Электрон. текстовые данные. – СПб.: Санкт-Петербургский горный университет, 2015. – 213 с.

http://www.bibliocomplectator.ru/book/?id=71690

3. Математический практикум. Часть 3. Неопределенный интеграл. Определенный интеграл. Дифференциальное исчисление функции нескольких переменных. Учебно-методическое пособие / А.П. Господариков, М.А. Зацепин, В.В. Ивакин, В.А. Семенов, С.Е. Мансурова. Национальный минерально-сырьевой университет «Горный». – СПб, 2014. – 162 с.

http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=374&task=set_static_req&bns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=%D0%90%2088717%2F%D0%9C%2034%2D533720026<.>

4. Математический практикум. Часть 4. Дифференциальные уравнения. Ряды. Ряды Фурье. Интегральное исчисление функции нескольких переменных. Учебно-методическое пособие / А.П. Господариков, Т.Р. Акчурин, С.Е. Мансурова, Т.С. Обручева, А.А. Яковлева. Национальный минерально-сырьевой университет «Горный». – СПб, 2014. – 152 с.

http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=374&task=set_static_req&bns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=%D0%90%2088717%2F%D0%9C%2034%2D147020047<.>

5. Высшая математика: учебник / В.С. Шипачев. – М.: ИНФРА-М, 2018.-479~c.

http://znanium.com/catalog/product/851522

6. Фихтенгольц, Г.М. Основы математического анализа. В 2-х тт. Том 1 [Электронный ресурс]: учебник / Г.М. Фихтенгольц. – Электрон. дан. – Санкт-Петербург: Лань, 2015. – 448 с.

https://e.lanbook.com/book/65055

Содержание

Введение	3
1. Неопределенный интеграл	
Варианты заданий.	
2. Дифференциальные уравнения	
Варианты заданий.	
Библиографический список	