Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования Санкт-Петербургский горный университет

Кафедра физической химии

КОЛЛОИДНАЯ ХИМИЯ

Методические указания к самостоятельной работе для студентов бакалавриата направления 18.03.01

> САНКТ-ПЕТЕРБУРГ 2019

КОЛЛОИДНАЯ ХИМИЯ: Методические указания к самостоятельной работе / Санкт-Петербургский горный университет. Сост.: *О.В. Черемисина, Т.Е. Литвинова, В.В. Сергеев.* СПб, 2019. 23 с.

Методические указания содержат материал, необходимый для самостоятельной подготовки студентов к работе на практических и лабораторных занятиях.

Предназначены для студентов бакалавриата направления 18.03.01 «Химическая технология» профилей «Химическая технология природных энергоносителей и углеродных материалов», «Химическая технология неорганических веществ».

Научный редактор проф. О.В. Черемисина

Рецензент доц. *И.В. Приходько* (Санкт-Петербургский государственный университет)

ВВЕДЕНИЕ

Изучение дисциплины **«Коллоидная химия»** предполагает формирование у студентов

- получение базовых теоретических основ, общих законов и закономерностей, определяющих свойства и устойчивость дисперсных систем, поверхностных явлений;
- формирование представлений в области поверхностных явлений: поверхностного натяжения, смачивания, адсорбции, электрокинетических явлений:
- приобретение навыков практического применения полученных знаний для определения условий образования и разрушения дисперсных систем, прогнозирования протекания процессов сорбции, электрокинетических явлений, способностей для самостоятельной работы.

В процессе изучения дисциплины студенты выполняют ряд лабораторных работ, которые составляют основу их практической подготовки.

Самостоятельная работа направлена на углубление и закрепление знаний, полученных на лекциях, а также выработку навыков самостоятельного приобретения новых, дополнительных знаний, подготовку к предстоящим учебным занятиям и промежуточному контролю.

Самостоятельная работа – обязательная и неотъемлемая часть учебной работы студента, направленная на:

- систематизацию, закрепление, углубление и расширение полученных теоретических знаний и практических умений;
- формирование умений использовать различные информационные источники: нормативную, правовую, справочную документацию и специальную литературу;
- развитие познавательных способностей, творческой инициативы, ответственности и организованности;
 - развитие исследовательских умений.

Самостоятельная работа по дисциплине «Коллоидная химия» включает подготовку к лабораторным работам и изучение дополнительных материалов. В методических указаниях описываются

действия, которые необходимо выполнить студенту в рамках самостоятельной работы.

1. ТЕМАТИКА САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Дисциплину «Коллоидная химия» студенты изучают в течение 5 семестра. Образовательный курс состоит из пяти разделов.

Тематика разделов дисциплины, рекомендуемая для закрепления пройденного материала предсталена ниже.

Раздел 1. Классификация, молекулярно-кинетические и оптические свойства дисперсных систем

- 1. Каким образом можно из лиофобного золя получить лиофильный золь?
- 2. Какие теоретические представления составляют основу оптических свойств дисперсных систем?
- 3. Какие свойства дисперсных систем относят к молекулярно-кинетическим?
- 4. Каково практическое применение теоретических представлений о молекулярно-кинетических свойствах дисперсных систем?
- 5. Какие физические параметры коллоидной системы входят в уравнение Эйнштейна-Смолуховского?

Раздел 2. Термодинамика дисперсных систем

- 1. Какой алгоритм действий необходим для экспериментального определения площади поперечного сечения функциональной группы, входящей в состав молекулы поверхностно-активного вешества?
- 2. Какие экспериментальные данные следует получить для определения длины углеводородного радикала молекулы поверхностно-активного вещества?
 - 3. Как связаны понятия когезия, адгезия и смачивание?
 - 4. Какое уравнение описывает капиллярные явления?
 - 5. Какое явление называют капиллярной конденсацией?

Раздел 3. Адсорбция

1. Как сила межмолекулярного взаимодействия влияет на величину молекулярной адсорбции?

- 2. Какие экспериментальные данные следует иметь в наличии для установления значения константы равновесия процесса адсорбции?
 - 3. Какова зависимость адсорбции от температуры?
- 4. Какова должна быть последовательность действий для экспериментального определения лимитирующей стадии адсорбции на поверхности раздела жидкой и твердой фазы?
- 5. Какие характеристики сорбента получают на основании изучения выходной кривой?

Раздел 4. Электрокинетические явления

- 1. Какие экспериментальные данные следует получить для установления знака заряда гранулы мицеллы?
- 2. Каким образом мицеллообразование влияет на растворимость веществ?
- 3. Каково практическое применение явлений электроосмоса и электрофореза?
- 4. Каков алгоритм действий для экспериментального установления величины электрокинетического потенциала?
- 5. Какие параметры влияют на величину электрокинетического потенциала?

Раздел 5. Устойчивость дисперсных систем

- 1. Какова последовательность действий, необходимых для установления величины порога коагуляции?
- 2. Каким образом величина электрокинетического потенциала влияет на устойчивость золя?
 - 3. В чем заключается сущность процесса флокуляции?
- 4. Каково практическое применение метода флокуляции в химических технологиях?
- 5. Какова последовательность действий при выборе флокулянта или коагулянта?

Тематика самостоятельной работы студента для углубленного изучения представлена в табл. 1.

Tаблица 1 Тематика самостоятельной работы

№ п/п	Наименование раздела дисциплины	Тематика самостоятельной работы
1.	Классифика-	Связь межмолекулярного взаимодействия
	ция, молеку-	и классификации коллоидных систем по
	лярно-кинети-	интенсивности взамиодействия дисперс-
	ческие и опти-	ной фазы и дисперсионной среды. Моле-
	ческие свойст-	кулярно-кинетические свойства дисперс-
	ва дисперсных	ных систем. Диффузия. Оптические свой-
	систем	ства дисперсных систем.
2.	Термодинами- Условие самопроизвольности процесс	
	ка дисперсных	коллидных системах.
	систем	Методы определения (экспериментальные
		или расчетные) поверхностного натяже-
		ния на границе раздела жидкость-газ, двух
		жидкостей, жикость-твердое и газ-твердое
		Связь адгезии, смачивания и капиллярных
		явлений. Применение явления адгезии и
		капиллярных явлений в технологиях за-
		щиты окружающей среды.
3.	Адсорбция	Подходы к физико-химическому описа-
		нию сорбционных явлений. Постановка
		экперимента для определения кинетиче-
		ских и термодинамических показателей
		сорбции. Применение сорбции в техноло-
		гиях очистки газов и промышленных сто-
4	7	KOB.
4.	Электрокине-	Методы определения величины электро-
	тические	кинетического потенциала. Применение
	явления	электрокинетичесикх явлений для водо-
		подготовки. Связь величины электрокине-
		тического потенциала и устойчивости
		дисперсных систем.

№ п/п	Наименование раздела дисциплины	Тематика самостоятельной работы	
5.	Устойчивость дисперсных систем	Седиментационный анализ. Применение для технологии. Механизм действия коагулянтов и флокулянтов. Применение коагулации/флокуляции в технологиях инженерной защиты.	

Изучать курс рекомендуется по темам, предварительно ознакомившись с содержанием каждой из них по программе. При первом чтении следует стремиться к получению общего представления об излагаемых вопросах, а также отмечать трудные или неясные моменты. При повторном изучении темы необходимо освоить все теоретические положения и подходы к решению практических задач.

Для более эффективного запоминания и усвоения изучаемого материала, полезно иметь рабочую тетрадь (можно использовать лекционный конспект) и заносить в нее основные понятия, новые незнакомые термины и названия, математические зависимости и их выводы и т.п. Весьма целесообразно пытаться систематизировать учебный материал, проводить обобщение разнообразных фактов, сводить их в таблицы. Такая методика облегчает запоминание и уменьшает объем конспектируемого материала.

Изучая курс, полезно обращаться к предметному указателю в конце книги и к глоссарию (словарю терминов). Пока тот или иной раздел не усвоен, переходить к изучению новых разделов не следует. Краткий конспект курса будет полезен при повторении материала в период подготовки к промежуточной аттестации.

2. ПОДГОТОВКА К ЛАБОРАТОРНЫМ РАБОТАМ

Основная цель лабораторных занятий — связать теоретические знания с практической деятельностью.

Рекомендуется следующий порядок выполнения работ. В начале семестра группа студентов делится на команды по числу вы-

полняемых в семестре лабораторных работ (используют подход «работа в группе»). График выполнения бригадами лабораторных работ студенты получают у преподавателя или могут ознакомиться с ним на доске объявлений кафедры. Возможен индивидуальный подход. В этом случае студент получает от преподавателя персональное задание на выполнение лабораторного практикума. Тематика лабораторных работ приведена в табл. 2.

Таблица 2 Тематика лабораторных работ

№ п/п	Наименование раздела дисциплины	Тематика лабораторных работ		
1.	Классификация, молеку-	Определение размеров частиц		
	лярно-кинетические и оп-	дисперсных систем турбидимет-		
	тические свойства дис-	рическим методом		
	персных систем			
2.	Термодинамика дисперс-	Исследование поверхности раз-		
	ных систем	дела фаз: раствор ПАВ - воздух		
3		Исследование молекулярной ад-		
		сорбции растворенного вещества		
	Сорбция	из растворов на активированном		
	Сороция	угле		
4.		Исследование обменной адсорб-		
		ции ионов		
5.	Электрокинетические	Получение лиофобных золей		
	явления			
6.		Определение порога коагуляции		
		визуальным методом		
7.	Устойчивость дисперсных	Изучение коагуляции гидрозоля		
	систем	железа		
8.		Определение критической кон-		
		центрации мицеллообразования		

Студенты должны приходить на лабораторную работу заранее подготовленными. При подготовке к лабораторным работам не-

обходимо ознакомиться с методическими указаниями к лабораторному практикуму и уяснить:

- цель работы;
- содержание работы;
- правила техники безопасности;
- порядок выполнения работы;
- результаты, которые должны быть получены в процессе выполнения работы;
 - требования к отчету по работе.

Перед выполнением лабораторной работы студенты должны получить к ней допуск. Для допуска требуется знание теоретических основ выполняемой работы в пределах данных методических указаний, хода ее выполнения, порядка записи и обработки результатов измерений и вычисления погрешностей, наличие протокола ведения эксперимента, содержащего необходимые исходные данные и таблицы для записи экспериментальных данных. Образец протокола по каждой лабораторной работе приведен в [6].

После получения допуска студенты приступают к выполнению экспериментов. Полученные результаты эксперимента должны быть сразу занесены в протокол. Он должен быть выполнен по возможности аккуратно, в протокол необходимо занести используемое оборудование, реактивы, все экспериментальные данные, концентрации использованных растворов и др. В конце работы экспериментальные данные предъявляются преподавателю. Протокол является неотъемлемой частью отчета и должен быть подписан преподавателем с указанием даты выполнения работы. Исправления, подтирки, корректор в протоколе не допускаются. Новые измерения должны заноситься ниже придыдущих и опять подписываться преподавателем. Отчет без подписанного протокола на проверку не принимается, а лабораторная работа выполняется вновь.

3. РЕКОМЕНДАЦИИ К ОФОРМЛЕНИЮ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

Отчет по лабораторной работе вместе с протоколом сдается преподавателю не позднее начала следующей лабораторной работы. Отчет должен быть оформлен в соответствии с индивидуальным заданием согласно методическим указаниям к конкретной работе и должен содержать следующие части:

- название работы;
- цель работы;
- оборудование и используемые реактивы;
- описание сущности работы и хода эксперимента;
- экспериментальные данные;
- обработка экспериментальных данных;
- выводы.

Текст и его размещение на странице

Пояснительная записка выполняется на одной стороне листов формата A4 (размером 297x210 мм.). Поля для страницы должны быть: верхнее, нижнее -2.5 см., правое -1.5 см., левое -3 см.

Основной шрифт текста в документе Times New Roman, размер 14 пт., начертание обычное. Выравнивание текста, в основном – по ширине страницы. Междустрочные интервалы – полуторные (рис. 1).

Перенос слов – автоматический.

Абзацы в тексте начинаются отступом, равным 1,25 см.

Разделы и подразделы

Текст документа делится на разделы и подразделы. Разделы должны иметь порядковые номера в пределах всего документа, обозначенные арабскими цифрами. Номер подраздела состоит из номеров раздела и подраздела, разделенных точкой. В конце номера подраздела точка не ставится.

Рис. 1 Параметры разметки страницы

Номера разделов и подразделов записываются с абзацным отступом:

- 3. Третий раздел
- 3.1 Первый подраздел третьего раздела
- 3.1.1 Номера пунктов первого подраздела
- 3.1.2 ...
- 3.2 Второй подраздел третьего раздела
- 3.2.1 Номера пунктов второго подраздела
- 3.2.2

Разделы и подразделы должны иметь заголовки. Пункты, как правило, заголовков не имеют. Заголовки должны чегко и кратко отражать содержание разделов, подразделов.

Заголовки начинаются с прописной буквы без точки в конце и без подчеркиваний. Переносы слов в заголовках не допускаются. Если заголовок состоит из двух предложений, их разделяют точкой.

Расстояние между заголовком и текстом -4 интервала, между заголовками раздела и подраздела -2 интервала. Каждый раздел текстового документа рекомендуется начинать с новой страницы.

Списки (перечисления)

Перед каждой позицией перечисления рекомендуется ставить дефис, например:

В тексте документа не допускается:

- применять обороты разговорной речи;
- применять произвольные словообразования;
- применять сокращения слов.

При необходимости ссылки на пункт перечисления перед каждой позицией ставится буква, после которой ставится скобка. Для дальнейшей детализации перечислений необходимо использовать арабские цифры, после которых ставится скобка, а запись производится с абзацного отступа, например:

Классификация методов решения систем линейных алгебраических уравнений:

- а) прямые;
 - 1) метод Гаусса;
 - 2) метод Крамера;
 - 3) метод обратной матрицы;
 - 4) метод прогонки.
- б) численные;
 - 1) метод простой итерапии;
 - 2) метод Зейделя.

Опечатки и ошибки

Опечатки и графические неточности, обнаруженные после распечатки документа, допускается подчищать или закрашивать белой краской с последующим рукописным исправлением. Повреждение листов текстовых документов не допускается.

Формулы

Формулой считают любую последовательность, состоящую не менее, чем из двух символов, которая не является словом в какомлибо языке. Для записи формул следует использовать приложение Microsoft Equation (рис. 2).

Рис. 2 Окно приложения Microsoft Equation

Размер символов формул (в пунктах): прописной -12, строчный -18, крупный индекс -7. мелкий индекс -5. Латинские символы записываются курсивом; функции, русские и греческие буквы, химические символы - обычным начертанием. Формулы располагаются по центру.

В формулах в качестве символов следует применять стандартые обозначения. Пояснения символов и числовых коэффициентов, входящих в формулу, должны быть приведены непосредственно под формулой, если они не пояснены ранее. Пояснение каждого символа следует давать с новой строки в той же последовательности, в которой они приведены в формуле. Пояснения должны начинаться со слова «где» без двоеточия после него.

Как правило, каждая формула записывается на отдельной строке, например:

Величина адсорбции по Гиббсу (Γ) или избыточная адсорбция представляет собой избыток компонента в поверхностном слое (на единицу площади поверхности) по сравнению с его количеством в равном объеме объемной фазы:

$$\Gamma = \frac{V_s(C_s - C_k)}{s} = \frac{V(C_i - C_k)}{s},\tag{1}$$

где C_k — равновесная концентрация компонента в объеме; C_i — исходная концентрация компонента в объеме; V — объем фазы.

Одноуровневые формулы (в которых все символы одного размера, без индексов), на которые нет ссылок в тексте, могут располагаться непосредственно в предложении.

Формулы, следующие одна за одной и не разделенные текстом, разделяют запятой. Переносить формулы на следующую строку допускается только на знаках выполняемых операций, причем знак в начале следующей строки повторяют. Например:

$$\Delta_r G = \sum \mu_i n_i = \sum (\mu_i^0 + RT \ln P_i') n_i = \sum \mu_i^0 n_i + RT \sum \ln(P_i')^{n_i} = -RT \ln K_P^0 + RT \sum \ln(P_i')^{n_i}.$$
(2)¶

Формулы, за исключением формул в приложениях, должны нумероваться сквозной нумерацией арабскими цифрами, которые записывают справа от формулы в круглых скобках.

Допускается нумерация формул в пределах раздела. В этом случае номер формулы состоит из номера раздела и порядкового номера формулы, разделенных точкой.

Формулы в приложениях нумеруются отдельно в пределах каждого приложения с добавлением обозначения приложения перед порядковым номером формулы, например: (В.1).

Таблицы

Таблицы используют дня лучшей наглядности и удобства сравнения данных.

Таблицы помешают в тексте в порядке ссылки на них по окончании того абзаца, в котором таблица в первый раз была упомянута, или на следующей странице.

Таблицы нумеруются арабскими цифрами сквозной нумерацией. Допускается нумеровать таблицы в пределах раздела. В этом случае номер таблицы состоит из номеров раздела и таблицы, разделенных точкой, например, «Таблица 3.6». Форматирование номера таблицы: шрифт Times New Roman, размером 12 пт., начертагате обычное.

Формат названия таблицы: шрифт – Times New Roman, его размер – 12 пт. Выравнивание названия таблицы – но ширине строки.

Заголовки столбцов и строк таблицы начинаются с прописной буквы. В конце точка не ставится. Заголовки столбцов, как правила записываются горизонтально, но. при необходимости допускается их вертикальное расположение.

Заголовки столбцов центрируют по ширине столбца, заголовки строк выравнивают по левому краю. Текст в таблице, включая заголовки столбцов и строк, выполняется шрифтом Times New Roman размером 12 пт., их начертание — обычное. При необходимо-

сти, допускается уменьшение размера шрифта во всей таблице до 10 пт. Образец оформление таблицы см. табл.3.

Таблица 3

	1	Объем растворов, мл					
№ варианта	нт	Смесь 1			Смесь 2		
	вариа	раствор I Na ₂ SO ₄ ·10H ₂ O	H ₂ O	C ₂ H ₅ OH	раствор II ВаСl ₂ ·2H ₂ О	H ₂ O	C ₂ H ₅ OH
«a>	>	1	5	4	1	5	4
«b»	»	1	2	3	1	2	3
«c>	>	1	1,5	3,5	1	1,5	3,5

Рис. 3 Образец оформление таблицы

При переносе части таблицы на другую страницу название помещают только над первой частью таблицы, а перед номером второй части таблицы пишут слово «Продолжение», например: «Продолжение табл. 3.3».

Таблицу с большим количеством столбцов допускается делить на части и помещать одну часть под другой в пределах одной страницы.

На все таблицы должны быть ссылки. Для ссылки необходимо использовать слово «табл.» с указанием ее номера например: «Полученное значение занести в табл. 1 протокола лабораторной работы».

Рисунки

Количество иллюстраций должно быть достаточно для пояснения текста. Иллюстрации должны находиться после абзаца с первым упоминанием о них, или на следующей странице. Иллюстрации следует нумеровать арабскими цифрами сквозной нумерацией, например: «Рис. 1». Допускается нумерация рисунков в пределах раздела. В этом случае номер рисунка состоит из номера раздела и порядкового номера иллюстрации, разделенных точкой, например: «Рис. 1.1». При ссылке на рисунки следует писать: ... см. рис. 1.

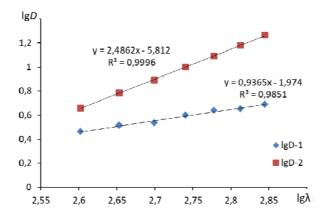


Рис. 4 Графическое решение задачи

Кроме номера, рисунки должны иметь название, кратко и точно отражающее содержание иллюстрации. Точка в конце названия не ставится. Формат подписи к рисунку: шрифт Times New Roman, размер 12 пг., начертание обычное, выравнивание – по центру строки. Междустрочный интервал в названиях из нескольких строк равен 1.

Преподаватель проверяет отчет (офомление обложки отчета см. рис. 5) и может возвратить его для исправления ошибок либо для переделки лабораторной работы. Возврат отчета на исправление допускается не более двух раз и только в течение месяца со дня выполнения работы. По истечении этого срока, если отчет не принят, работа подлежит переделке с новым персональным заданием. Принятый отчет подлежит защите. На защите требуется знание теоретического и практического материала по защищаемой лабораторной работе.

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ»

Кафедра физической химии

Отчет по лабораторной работе №1

По дисциплине	КОЛЛОИДНАЯ ХИМИЯ					
Тема	Определение размеров частиц дисперсных систем турбидиметрическим методом					
Автор: студент группы	TX-16-1	(подпись)	(ФИО)			
ОЦЕНКА:		_				
ДАТА:		<u> </u>				
ПРОВЕРИЛ	(должность)	(подпись)	(ФИО)			

Санкт-Петербург 2019 год

Рис. 5 Образец обложки отчета лабораторных работ

4. КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

- 1. Какую силу называют «внутреннее давление»?
- 2. От какого параметра зависит величина внутреннего давления?
- 3. Какую работу надо совершить для образования межфазной поверхности?
- 4. Какой вид энергии отвечает понятию «поверхностная энергия»?
- 5. Как определяется толщина поверхностного слоя по методу Гиббса?
 - 6. По какой формуле вычисляют величину работы когезии?
 - 7. Что называют явлением когезии?
 - 8. Что называют явлением адгезии?
- 9. Работу адгезии необходимо затратить в равновесном изотермическом процессе для чего?
- 10. Какая математическая запись является уравнением Дюпре?
 - 11. Какая величина описывает интенсивность смачивания?
- 12. Какая математическая формула является уравнением Юнга?
- 13. Как соотносится со значением «нуль» величина косинуса краевого угла при помещении капли воды на гидрофильную поверхность?
- 14. Над поверхностью какой формы давление пара жидкости выше?
- 15. Какая математическая формулы является уравнением Лапласа—Юнга для поверхности типа сфера?
- 16. Какая математическая формулы является уравнением Жюрена?
- 17. Как изменяет величину поверхностного натяжения при молекулярной адсорбции компонент, переходящий в поверхностный слой?
- 18. Каким уравнением определяется абсолютная величина адсорбции?
- 19. Каким уравнением определяется величина адсорбции по Гиббсу?

- 20. В какой концентрационной области справедлива изотерма адсорбции Генри?
- 21. Как влияет рост температуры процесса на величину адсорбции?
- 22. От каких параметров молекулы зависит величина предельной адсорбции?
 - 23. Какова формулировка правила Дюкло-Траубе?
- 24. Какая математическая запись является уравнением Шишковского?
- 25. Какая математическая формула описывает уравнение Никольского?
 - 26 Что такое ПОЕ?
 - 27. Полная динамическая обменная емкость это что?
- 28. Какую функциональную группу содержит катионит средней силы?
- 29. Какие механизмы сорбция поверхностью кристалла принято выделять?
- 30. Чему равен заряд поверхности при изоэлектрической точке?
- 31. Каким уравнением связаны произведение растворимости и величина ИЭТ?
 - 32. Где находится плоскость скольжения?
 - 33. Где возникает электрокинетический потенциал?
 - 34. Что называют электроосмосом?
 - 35. Что называют явлением электрофореза?
- 36. Каким уравнением определяется линейная скорость электроосмоса?
- 37. Каким уравнением связаны объемная скорость электроосмоса и электрокинетический потенциал?
- 38. Каким уравнением определяется линейная скорость электрофореза?
- 39. Каким уравнением определяется величина среднего сдвига частицы?
- 40. Какое уравнение связывает величину коэффициента диффузии с размерами диффундирующих частиц?
 - 41. По какой формуле вычисляют средний размер частиц?

- 42. Чем обусловлена седиментационная устойчивость золя?
- 43. Каким уравнением определяется скорость движения частицы при седиментации?
- 44. Какова математическая запись условия седиментационной устойчивости системы?
 - 45. Какие ионы вызывают коагуляцию?
 - 46. Какова математическая запись правила Шульце-Гарди?
- 47. По какой формуле вычисляют величину порога коагуляции?
- 48. Какая математическая запись является уравнением Релея?
- 49. По какой формуле согласно уравнению Релея вычисляют радиус частицы при известном показателе мутности?
- 50. Каково уравнение Бугера-Ламберта-Бера для турбидиметрического анализа?
- 51. По какой формуле рассчитывают размер частиц, определяемый при помощи ультрамикроскопа?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основная литература

- 1. Гельфман М.И. Коллоидная химия. Учебник / М.И. Гельфман, О.В. Ковалевич, В.П. Юстратов. СПб.: «Лань». 2017. 336 с. https://e.lanbook.com/book/91307
- 2. Захарченко В.Н. Коллоидная химия. Учебник для вузов. 2 издание, переработанное и дополненное. М: «Высшая школа». 1989. 238 с. http://www.studmed.ru/zaharchenko-vn-kolloidnaya-himiya e5c7bf89249.html
- 3. Фридрихсберг Д.А. Курс коллоидной химии. Учебник. СПб.: «Лань». 2010. 416 с. https://e.lanbook.com/book/4027
- 4. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. Учебник для вузов. 2 издание, переработанное и дополненное. М.: «Химия». 1988(9). 464 с. http://www.studmed.ru/frolov-yug-kurs-kolloidnoy-himii-poverhnostnye-yavleniya-i-dispersnye-sistemy 826d735ece8.htm

Дополнительная литература

- 5. Зимон А.Д. Коллоидная химия. Учебник для вузов. 4-е издание, исправленное и дополненное. М.: «Агар». 2003. 318 с. http://www.studmed.ru/zimon-ad-fizicheskaya-himiya-uchebnik-dlya-vuzov 261fe4210a0.html
- 6. Коллоидная химия: Методические указания к лабораторным работам/Национальный минерально-сырьевой университет «Горный». Сост.: О.В. Черемисина, О.Л. Лобачева, Д.С. Луцкий, Н.В. Джевага. СПб, 2015. 42 с.
- 7. Коллоидная химия. Поверхностные явления. часть 1.: Учебное пособие/ Сост.: О.В. Черемисина, Т.Е. Литвинова, В.В. Сергеев СПб.: Изд-во Инфо-да, 2018. 88 с.
- 8. Липин А.Б., Воронин Н.Н. Коллоидная химия. Сборник задач. СПб., СПГГИ. 2002. 89 с. http://www.studmed.ru/voronin-nn-i-dr-kolloidnaya-himiya-sbornik-zadach-d0bee412f27.html
- 9. Фридрихсберг Д.А. Курс коллоидной химии. Учебник для вузов. 2 издание, переработанное и дополненное. Л.: «Химия». 1984. 368 с. http://www.studmed.ru/fridrihsberg-da-kurs-kolloidnoy-himiii_5cb10ebee55.html

- 10.Щукин Е.Д. Коллоидная химия. Учебник для академического бакалавриата. 7 издание, исправленное и дополненное / Е.Д. Щукин, А.В. Перцов, Е.А. Амелина. М.: «Юрайт». 2017. 444 с. https://www.biblio-online.ru/viewer/DAA9C0A4-CAC2-4226-9134-D0B7CBA3D2B7#page/2
- 11.Яковлева А.А. Коллоидная химия. Учебное пособие для вузов. 2 издание, исправленное и дополненное. М.: «Юрайт». 2017. 2019 с. https://www.biblio-online.ru/viewer/23DE9706-D989-4971-B9EE-FE191939881E#page/2

Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Электронный периодический справочник «Система ГА-PAHT»; <u>www.garant.ru</u>
- 2. Справочно-поисковая система Консультант Плюс; www.consultant.ru/
- 3. Электронно-библиотечная система «Лань»; https://e.lanbook.com/books
- 4. Электронно-библиотечная система «Znanium.com»; http://znanium.com
- 5. Электронно-библиотечная система «Университетская библиотека онлайн»; http://biblioclub.ru
- 6. Электронно-библиотечная система «Библиокомплектатор»; http://www.bibliocomplectator.ru
- 7. Электронно-библиотечная система «ЭБС ЮРАЙТ» www.biblio-online.ru
- 8. Термические константы веществ. Электронная база данных. http://www.chem.msu.su/cgi-bin/tkv.pl
- 9. Научная электронная библиотека ScienceDirect: http://www.sciencedirect.com
- 10. Научная электронная библиотека «eLIBRARY»: https://elibrary.ru/

СОДЕРЖАНИЕ

Введение	3
1. Тематика самостоятельной работы	
2. Подготовка к лабораторным работам	7
3. Рекомендации к оформлению отчета	
по лабораторной работе	10
4. Контрольные вопросы для самопроверки	
Библиографический список	

КОЛЛОИДНАЯ ХИМИЯ

Методические указания к самостоятельной работе для студентов бакалавриата направления 18.03.01

Сост.: О.В. Черемисина, Т.Е. Литвинова, В.В. Сергеев

Печатается с оригинал-макета, подготовленного кафедрой физической химии

Ответственный за выпуск O.B. Черемисина Лицензия ИД № 06517 от 09.01.2002

Подписано к печати 25.01.2019. Формат $60\times84/16$. Усл. печ. л. 1,3. Усл.кр.-отт. 1,3. Уч.-изд.л. 1,1. Тираж 100 экз. Заказ 39. С 18.

Санкт-Петербургский горный университет РИЦ Санкт-Петербургского горного университета Адрес университета и РИЦ: 199106 Санкт-Петербург, 21-я линия, 2