Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования Санкт-Петербургский горный университет

Кафедра бурения скважин

БУРОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ЖИДКОСТИ

Методические указания к практическим занятиям для студентов бакалавриата направления 21.03.01

САНКТ-ПЕТЕРБУРГ 2020 УДК 622.244.4.06+622.245.42 (073)

БУРОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ЖИДКОСТИ: Методические указания к практическим занятиям / Санкт-Петербургский горный университет. Сост. *Е.Л. Леушева.* СПб, 2020. 30 с.

Методические указания охватывают вопросы изучения технологических свойств технологических жидкостей, методов рецептурных исследований и математической обработки результатов.

Предназначены для студентов бакалавриата направления 21.03.01 «Нефтегазовое дело» профиля «Бурение нефтяных и газовых скважин».

Научный редактор проф. М.В. Двойников

Рецензент доц. В.Я. Климов (СК «Тектоника»)

© Санкт-Петербургский горный университет, 2020

БУРОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ЖИДКОСТИ

Методические указания к практическим занятиям для студентов бакалавриата направления 21.03.01

Сост. Е.Л. Леушева

Печатается с оригинал-макета, подготовленного кафедрой бурения скважин

Ответственный за выпуск Е.Л. Леушева

Лицензия ИД № 06517 от 09.01.2002

Подписано к печати 11.06.2020. Формат 60×84/16. Усл. печ. л. 1,7. Усл.кр.-отт. 1,7. Уч.-изд.л. 1,6. Тираж 75 экз. Заказ 342. С 34.

Санкт-Петербургский горный университет РИЦ Санкт-Петербургского горного университета Адрес университета и РИЦ: 199106 Санкт-Петербург, 21-я линия, 2

Задание №1 Оптимизация состава бурового раствора на основе полного факторного анализа

Полный факторный анализ заключается в проверке всех возможных сочетаний факторов. Количество опытов n определяется по формуле:

$$n = p^q, (1.1)$$

где q – число факторов, p – число уровней изменения факторов.

Причем все факторы имеют одинаковое число уровней.

В качестве факторов при отработке рецептуры буровых жидкостей служат материалы, химические реагенты, температура и другие. При планировании эксперимента и математической обработке результатов факторы обозначаются буквой «Xi». Результатами исследований служат технологические параметры, такие как статическое и динамическое напряжение сдвига, пластическая и условная вязкость, показатель фильтрации и т.д. Они обозначаются — «Yi». Обработка результатов экспериментальных исследований сводится к определению коэффициентов уравнения регрессии, которые могут быть представлены в виде:

- линейной модели:

$$Y = A_0 + A_1 X_1 + A_2 X_2 + A_3 X_3 + \dots$$
 (1.2)

- нелинейной модели:

$$Y = A_0 + A_1 X_1 + A_2 X_2 + A_3 X_3 + A_{12} X_1 X_2 + A_{13} X_1 X_3 + A_{23} X_2 X_3 \dots$$
 (1.3)

где A_0 , A_1 , A_2 , A_3 , A_{12} , A_{13} , A_{23} – коэффициенты уравнения регрессии.

$$A_0 = \frac{\sum Y_i}{n},\tag{1.4}$$

где Yi — значение параметра бурового раствора (например, показатель фильтрации Φ_{30}), n — количество опытов.

Цель работы: отработка рациональной рецептуры бурового раствора при заданных условиях и математическая обработка результатов исследований.

Возможные приборы и материалы:

- 1. Ротационный вискозиметр;
- 2. Воронка для измерения условной вязкости;
- 3. Плотномер (рычажные весы или ареометр);
- 4. Фильт-пресс;
- pH метр;
- 6. Бентонитовые глинопорошки, утяжелители и химические реагенты.

Порядок работы:

- 1. Для заданных геологических условий обосновать тип бурового раствора и его основные компоненты (2-3 реагента).
 - 2. Определить количество опытов.
 - 3. Составить матрицу планирования по форме (Таблица 1).
- 4. Провести расчетное количество опытов согласно матрице планирования и результаты занести в Таблицу 1.1.

Таблица 1.1

		матрица планирования							
N_0N_0		Факторы		Результаты исследований					
опытов	X_{I}	X_2	X_3	$Y_I(\Phi_{30})$	$Y_2(CHC_1)$	<i>Y</i> ₃ (УВ)			
1									
2									
3									

5. Результаты исследований обработать с использованием корреляционно-регрессивного метода.

Для определения коэффициентов уравнения регрессии Ai заполнить таблицу 2 «Уровни и интервалы варьирования» и таблицу 3 «Формализованная матрица планирования».

В таблицу 1.2 в графу «Базовый уровень занести среднее значение фактора. Например, минимальная концентрация КМЦ – 0,2%, максимальная – 0,6%, а базовый уровень – 0,4%. Соответственно интервал варьирования – 0,2%.

Уровни и интервалы варьирования

v						
Факторы	Уровни		Базовый уро-	Интервал варь-		
	min	max	вень	ирования		
X_{I}	X_1^{min}	X_1^{max}	X_1^{cp}	ΔX_1		
X_2	X_2^{min}	X_2^{max}	X_2^{cp}	ΔX_2		
X_3	$X_3^{\rm min}$	X_3^{max}	X_3^{cp}	ΔX_3		

В эксперименте приняты два уровня изменения факторов: верхний (+1) и нижний (-1), который отсчитываются от базового уровня прибавлением или вычитанием интервала варьирования для каждого из факторов.

Для вычисления коэффициентов Ai в формализованную матрицу вводят единичные вектор-столбцы переменных (Xi) (Таблица 1.3).

Таблица 1.3

Формализованная матрица планирования									
N_0N_0		Факторы							
опытов	X_1	X_2	X_3	$X_1 X_2$	$X_1 X_3$	$X_2 X_3$			

Таким образом, для подсчета коэффициента A_1 используются вектор — X_1 , а для A_2 — вектор-столбец X_2 и т.д.

При описании процесса (изменения параметров) может быть использована нелинейная модель. В этом случае, пользуясь правилом перемножения столбцов, получаем столбец произведения двух факторов.

Используя таблицу 1.3, можно определить Ai по формуле:

$$A_i = \frac{\sum (X_{ij}Y_j)}{n},\tag{5}$$

где X_{ij} — значение фактора в формализованной форме; i — номер фактора, j — номер строки $(1 \dots n)$; Yj — результат опыта; n — количество опытов.

ПРИМЕР: Кальцинированная сода (X_l) : 0,2; 0,4; 0,6%

Глинопорошок (X_2): 2, 3, 4% Количество опытов – 9

Таблица 1.4 Матрица планирования

Y' = 10,48

№№ опытов	Факт	оры	$\Phi_{30}(Y)$
<u> </u>	X_1	X_2	
1	0,2	2	11,4
2	0,4	2	11,6
3	0,6	2	11,8
4	0,2	3	10,8
5	0,4	3	8,4
6	0,6	3	10,2
7	0,2	4	9,8
8	0,4	4	9,4
9	0,6	4	10,9
			$\Sigma Y = 94,3$

Составляем уравнение регрессии вида $Y = A_0 + A_1 X_1 + A_2 X_2 + A_{12} X_1 X_2$. Для определения коэффициентов заполняем таблицы 1.5 и 1.6.

Среднее значение результатов исследований

Таблица 1.5

Уровни и интервалы варьирования

	* * * * * * * * * * * * * * * * * * *	BI Bupbiipobuiiin			
Факторы	Уровни		Базовый уро-	Интервал варь-	
	min max		вень	ирования	
X_1	0,2	0,6	0,4	0,2	
X_2	2	4	3	1	

Составляем формализованную матрицу.

Таблица 1. 6

Формализованная матрица планирования

№№ опытов		Факторы	-	Y
	X_1	X_2	$X_1 X_2$	
1	-1	-1	+1	11,4
2	0	-1	0	11,6
3	+1	-1	-1	11,8
4	-1	0	0	10,8
5	0	0	0	8,4
6	+1	0	0	10,2
7	-1	+1	-1	9,8
8	0	+1	0	9,4
9	+1	+1	+1	10,9

$$A_0 = \frac{\sum Y}{n} = \frac{94.3}{9} = 10.5$$

$$A_1 = \frac{(-1)\cdot 11, 4 + 0\cdot 11, 6 + 1\cdot 11, 8 + (-1)\cdot 10, 8 + 0\cdot 8, 4 + 1\cdot 10, 2 + 9}{9}$$
$$\frac{+(-1)\cdot 9, 8 + 0\cdot 9, 4 + 1\cdot 10, 9}{9} = 0.10$$

$$A_2 = \frac{(-1)\cdot 11,4 + (-1)\cdot 11,6 + (-1)\cdot 11,8 + 0\cdot 10,8 + 0\cdot 8,4 + 0\cdot 10,2 + 0\cdot 10,8 + 0\cdot 10,8 + 0\cdot 10,8 + 0\cdot 10,2 + 0\cdot 10,1 + 0\cdot 10,1$$

$$A_{12} = \frac{11,4-11,8-9,8+10,9}{9} = \frac{0,7}{9} = 0,08$$

$$Y_1 = 10,5 + 0,1 \cdot 0,2 - 0,52 \cdot 2 + 0,08 \cdot 0,2 \cdot 2 = 9,51$$

$$Y_2 = 10,5 + 0,1 \cdot 0,4 - 0,52 \cdot 2 + 0,08 \cdot 0,4 \cdot 2 = 9,56$$

$$Y_3 = 10,5 + 0,1 \cdot 0,6 - 0,52 \cdot 2 + 0,08 \cdot 0,6 \cdot 2 = 9,62$$

$$Y_1 = 10,5 + 0,1 \cdot 0,2 - 0,52 \cdot 3 + 0,08 \cdot 0,2 \cdot 3 = 9,01$$

$$Y_2 = 10,5 + 0,1 \cdot 0,4 - 0,52 \cdot 3 + 0,08 \cdot 0,4 \cdot 3 = 9,08$$

$$Y_3 = 10,5 + 0,1 \cdot 0,6 - 0,52 \cdot 3 + 0,08 \cdot 0,6 \cdot 3 = 9,15$$

$$Y_1 = 10,5 + 0,1 \cdot 0,2 - 0,52 \cdot 4 + 0,08 \cdot 0,2 \cdot 4 = 8,50$$

$$Y_2 = 10,5 + 0,1 \cdot 0,4 - 0,52 \cdot 4 + 0,08 \cdot 0,4 \cdot 4 = 8,59$$

$$Y_3 = 10,5 + 0,1 \cdot 0,4 - 0,52 \cdot 4 + 0,08 \cdot 0,4 \cdot 4 = 8,59$$

$$Y_3 = 10,5 + 0,1 \cdot 0,6 - 0,52 \cdot 4 + 0,08 \cdot 0,4 \cdot 4 = 8,59$$

6. Адекватность полученной модели оцениваем по критерию Фишера F:

$$F = \frac{S_{ag}^2}{S^2 \{Y\}},\tag{1.6}$$

где S^2_{ag} - дисперсия адекватности; $S^2\{Y\}$ - дисперсия воспроизводимости.

$$S_{ag}^{2} = \frac{\sum_{i=1}^{n} (Y_{g} - Y_{i})^{2}}{f},$$

$$S^{2} \{Y\} = \frac{\sum_{i=1}^{n} (Y_{g} - Y')^{2}}{n-1}$$
(1.7)

где Yg — результат отдельного опыта; Yi — предсказанное по уравнению регрессии значение параметра в этом опыте; f — число степеней свободы; f = n - (g + 1); g — количество факторов; Y' - среднее значение результатов опытов (Yg).

$$(11,4-9,51)^{2} + (11,6-9,56)^{2} + (11,8-9,62)^{2} + (10,8-9,01)^{2} + (10,8-9,01)^{2} + (8,4-9,08)^{2} + (10,2-9,15)^{2} + (10,8-8,5)^{2} + (10,9-8,67)^{2} = \frac{+(9,8-8,5)^{2} + (9,4-8,59)^{2} + (10,9-8,67)^{2}}{6} = \frac{3,572 + 4,162 + 4,752 + 3,204 + 0,462 + 1,103 + 1,69 + (10,9-8,67)^{2}}{6} = \frac{+0,656 + 4,973}{6} = \frac{4,09}{8}$$

$$S^{2} \{Y\} = \frac{(11,4-10,48)^{2} + (11,6-10,48)^{2} + (11,8-10,48)^{2} + \dots}{8} = \frac{0,846 + 1,254 + 1,74 + 0,102 + 4,33 + 0,078 + 0,462 + 1,26 + 0,176}{8} = 1,27$$

$$F = \frac{4,09}{1,27} = 3,19$$

Сравнивая вычисленное значение F с табличным [Приложение 1] при заданном уровне значимости, определяют адекватность модели. Модель считается адекватной, если $F \le F_{\text{табл}}$.

Для данного примера табличные значения критерия Фишера составляют:

- $F_{\text{табл}}$ = 1,9 при уровне значимости 0,20
- $F_{\text{табл}}$ = 3,6 при уровне значимости 0,05
- $F_{\text{табл}}$ = 6,4 при уровне значимости 0,01

Расчетное значение критерия составляет 3,19. Таким образом, модель адекватна при уровне значимости 0,05.

- 7. Построить графики изменения параметров бурового раствора в зависимости от компонентного состава, т.е. $Y = f(X_i)$. Например, $Y = f(X_1)$ при $X_2 = const$, $X_3 = const$ (см. рисунок 1.1).
- 8. Учитывая допустимый интервал изменения значений параметров Y и используя графические зависимости, определить оптимальное содержание компонентов.

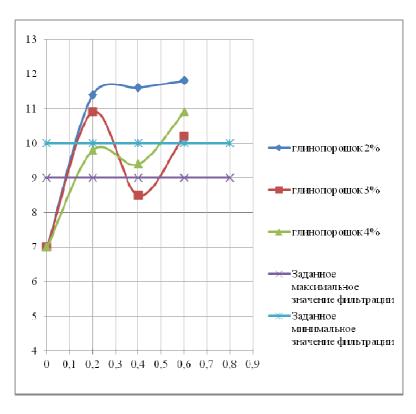


Рис. 1.1. Влияние компонентного состава бурового раствора на фильтрационные характеристики

Задание №2

Экспериментальная разработка рецептуры буровых жидкостей

Для повышения эффективности экспериментальных работ используются математические методы планирования. При подборе сложных многокомпонентных рецептур буровых жидкостей используются рациональный и эволюционный методы планирования.

При использовании рационального планирования эксперимента воздействие каждого фактора выявляется при одновременном изменении всех факторов. При этом все комбинации факторов должны быть осуществимы. Планирование эксперимента проводится в несколько этапов:

- Оценка границ области факторного анализа (границы изменения компонентов буровой жидкости) Выбирается уровень и интервалы варьирования факторов;
- Выбор конкретного способа планирования (комбинационные квадраты, цифровые матрицы, ортогональные латинские квадраты и кубы и др.). Определить количество опытов в зависимости от способа планирования. Например, при использовании ортогональных латинских кубов $N=p^3$ (p количество уровней факторов), при использовании комбинационных квадратов количество опытов зависит от вида квадрата (Приложение 2);
 - Составление матрицы планирования.

После проведения экспериментальных исследований необходимо установить связь между факторами и результатом. Влияние компонентов на параметры буровых жидкостей можно определить с использованием корреляционно-регрессионного анализа (линейное уравнение регрессии с той или иной теснотой связи).

Линейное уравнение множественной регрессии имеет вид:

$$Y = A_0 + A_1 X_1 + A_2 X_2 + A_3 X_3 + \dots + A_n X_n$$
 (2.1)

где Y — результативный или выходной признак; X_1 , $X_2...X_n$ — выходные параметры; A_0 , A_1 , $A_2....A_n$ — коэффициенты уравнения регрессии.

Решение этого уравнения сводится к определению коэффициентов и оценке степени идентичности уравнения экспериментальным данным. На идентичность модели существенно влияет степень

нелинейности. При высокой степени нелинейности необходимо линеализировать уравнение. Например, представить в двойных логарифмических координатах:

$$\lg Y = A_0 + A_1 \lg X_1 + A_2 \lg X_2 + A_3 \lg X_3 + \dots + A_n \lg X_n$$
 (2.2)

Определение коэффициентов множественной регрессии осуществляется в несколько этапов:

• Составляются корреляционные таблицы.

Число интервалов таблицы: $K = 1 + 3,32 \lg N$.

Шаг интервала: $\Delta Y = (Y_{max} - Y_{min})/K$; $\Delta X_i = (X_{imax} - X_{imin})/K$.

Таблица 2.1

Корреляционная таблица

λ	r ·i	Инте	Интервалы изменения Y			
Интервал	Среднее	Отдо	Отдо	Отдо	$v_i(X_i)$	
изменения	значение	Среднее значение Y в интервале (Y_i)				
X_i	X_i в интер-		• ` ` `			
	вале					
Отдо						
Отдо						
Отдо						
Частота						
$v_i(Y_i)$						

• Определяются математическое ожидание и дисперсии по формулам:

$$\bar{Y} = \frac{1}{N} \sum Y_i \nu_i(Y); \qquad \bar{X}_i = \frac{1}{N} \sum Y_i \nu_i(X_i)$$
 (2.3)

$$\sigma_Y^2 = \frac{1}{N-1} \sum_{i=1}^K (Y_i - \bar{Y})^2 \nu_i(Y); \quad \sigma_{x_i}^2 = \frac{1}{N-1} \sum_{i=1}^K (X_i - \bar{X}_i)^2 \nu_i(X_i) \quad (2.4)$$

• Определяются коэффициенты корреляции (r_{yxi}, r_{xixj}) и заполняется таблица 2.2:

$$r_{yxi} = \frac{1}{(n-1)\sigma_{Y}\sigma_{xi}} \sum_{i} (Y_{i} - \bar{Y}_{i})(X_{i} - \bar{X}_{i}) \nu_{i}(YX_{i}), \qquad (2.5)$$

где $v_i(X_i Y_i)$ – частота действия X_i с результатом Y_i .

$$r_{xixj} = \frac{1}{(n-1)\sigma_{xi}\sigma_{xj}} \sum_{i} (X_i - \bar{X_i})(X_j - \bar{X_j}) \nu_i(X_i X_j), \qquad (2.6)$$

где $v(X_i X_i)$ – частота пересечения факторов.

Например,

$$r_{x_1x_2} = \frac{1}{(n-1)\sigma_{x_1}\sigma_{x_2}} \sum_{x_1} (X_1 - \bar{X}_1)(X_2 - \bar{X}_2) \upsilon(X_1X_2)$$

Таблица 2.2

 Коэффициенты корреляции

 Фактор
 Y X_1 X_2 ...

 Y 1
 r_{yx1} r_{yx2}

 Y 1
 r_{yx2}

• Вычисляются коэффициенты уравнения регрессии, решив систему уравнений:

$$r_{yx1}\sigma_{y} = A_{1}\sigma_{x1} + A_{2}r_{x1x2}\sigma_{x2} + A_{3}r_{x1x3}\sigma_{x3} + \dots + A_{n}r_{x1xn}\sigma_{xn}$$

$$r_{yx2}\sigma_{y} = A_{1}r_{x2x1}\sigma_{x1} + A_{2}\sigma_{x2} + A_{3}r_{x2x3}\sigma_{x3} + \dots + A_{n}r_{x2xn}\sigma_{xn}$$

$$\dots \qquad (2.7)$$

$$r_{yxn}\sigma_{y} = A_{1}r_{xnx1}\sigma_{x1} + A_{2}r_{xnx2}\sigma_{x2} + A_{3}r_{xnx3}\sigma_{x3} + \dots + A_{n}\sigma_{xn}$$

$$A_{0} = Y - \sum A_{i}\bar{X}_{i} \qquad (2.8)$$

После определения коэффициентов уравнения регрессии устанавливается степень соответствия реальным условиям с использованием параметра «Мера идентичности» ($Q\{Y\}$):

$$Q\{Y\} = \frac{1}{1 + \frac{N_{i=1}^{N}(Y_{pacu_{-}i} - Y)^{2}}{N_{i=1}^{N}(Y_{pacu_{-}i} \bar{Y})^{2}}}$$
(2.9)

«Мера идентичности» $Q\{Y\}$ должна стремиться к 1.

Степень влияния каждого компонента (R_y/x_n) на конечный результат определяется по формуле:

$$R_{Y/X_n} = \frac{A_i \left(\frac{\sum Y_i X_i}{n} - \overline{Y} \overline{X_i}\right)}{\sigma_Y^2}$$
 (2.10)

Цель работы: Разработать рецептуру буровой жидкости для конкретных геологических условий.

Порядок работы

- 1. Для заданных геологических условий обосновать тип бурового раствора и определить его качественный состав, границы, уровень и интервалы варьирования компонентов.
- 2. Выбрать способ планирования и составить матрицу (Таблица 2.3).
- 3. Приготовить суспензию исходной плотности (в зависимости от пластовых условий и типа бурового раствора).
- 4. Провести лабораторные исследования и занести результаты в таблицу.
- 5. Составить уравнения регрессии и определить их коэффициенты, используя таблицы 2.1 и 2.2 и формулы 2.3-2.8.
- 6. Определить расчетные параметры и установить меру идентичности и степень влияния каждого компонента.
- 7. По расчетным уравнениям при постоянном содержании компонентов, оказывающих наименьшее влияние на качество бурового раствора (тампонажной или буферной жидкости), построить соответствующие графики и определить оптимальный состав для заданных условий по основному результирующему компоненту (например, $min \Phi_{30}$).

Матрица планирования

Компоненты бурового раствора			Парам	иетры бурового р	аствора
X_1	X_2		Y_1	Y_2	

ПРИМЕР ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА И ОБРАБОТКИ РЕЗУЛЬТАТОВ

Для предупреждения подваливания глинистых пород предполагается использовать классический хлоркалиевый буровой раствор на основе глинистой суспензии следующего состава:

- КССБ (понизитель фильтрации и реологических характеристик) 3...5%;
 - КМЦ (понизитель фильтрации) 0,5...1,0%;
 - Хлорид калия (ингибитор гидратация глин) 3,0...5,0%;
 - Гидроокись калия (щелочной электролит) 0,5...1,0%;

Принимаем, что каждый из компонентов изменяется по трем уровням, поэтому предпочтительнее использовать для проведения лабораторных исследований латинский куб.

Количество опытов $N = 3^3 = 27$.

Заполняем Таблицу 2.4.

Изменение показателя фильтрации отличается от линейной зависимости, поэтому составляем уравнение регрессии в двойных логарифмических координатах.

Tаблица 2.4 X_{l} – КССБ-2; X_{2} – КМЦ; X_{3} – КСІ; X_{4} – КОН

X_1/\ln	X ₂ /ln	X ₃ /ln	X ₄ /ln	Ф ₃₀ /ln
3/1,099	0,5/-0,693	3/1,099	0,75/-0,288	26/3,258
3/1,099	0,5/-0,693	4/1,386	0,5/-0,693	32/3,466
3/1,099	0,5/-0,693	5/1,609	1/0	32/3,466
3/1,099	0,75/-0,288	3/1,099	0,5/-0,693	32/3,466

Окончание табл. 2.4

X ₁ /ln	X ₂ /ln	X ₃ /ln	X ₄ /ln	Φ ₃₀ /ln
3/1,099	0,75/-0,288	4/1,386	1/0	40,3/3,689
3/1,099	0,75/-0,288	5/1,609	0,75/-0,288	48/3,871
3/1,099	1/0	3/1,099	1/0	17,6/2,868
3/1,099	1/0	4/1,386	0,75/-0,288	14,4/2,667
3/1,099	1/0	5/1,609	0,5/-0,693	42,2/3,742
4/1,386	0,5/-0,693	3/1,099	1/0	19,2/2,955
4/1,386	0,5/-0,693	4/1,386	0,75/-0,288	16,4/2,797
4/1,386	0,5/-0,693	5/1,609	0,5/-0,693	74,4/4,309
4/1,386	0,75/-0,288	3/1,099	0,75/-0,288	20,8/3,035
4/1,386	0,75/-0,288	4/1,386	0,5/-0,693	16,8/2,821
4/1,386	0,75/-0,288	5/1,609	1/0	24,3/3,178
4/1,386	1/0	3/1,099	0,5/-0,693	16/2,773
4/1,386	1/0	4/1,386	1/0	14,4/2,667
4/1,386	1/0	5/1,609	0,75/-0,288	44/3,784
5/1,609	0,5/-0,693	3/1,099	0,5/-0,693	17,6/2,868
5/1,609	0,5/-0,693	4/1,386	1/0	19,2/2,955
5/1,609	0,5/-0,693	5/1,609	0,75/-0,288	20,8/3,035
5/1,609	0,75/-0,288	3/1,099	1/0	16/2,773
5/1,609	0,75/-0,288	4/1,386	0,75/-0,288	40/3,689
5/1,609	0,75/-0,288	5/1,609	0,5/-0,693	40/3,689
5/1,609	1/0	3/1,099	0,75/-0,288	14,4/2,667
5/1,609	1/0	4/1,386	0,5/-0,693	35,2/3,561
5/1,609	1/0	5/1,609	1/0	24/3,178

Уравнение регрессии:

$$\ln\Phi_{30} = a_0 + a_1 \ln X_1 + a_2 \ln X_2 + a_3 \ln X_3 + a_4 \ln X_4$$

Число интервалов: $K = 1 + 3{,}32 \lg N = 1 + 3{,}32 \lg 27 = 6$

Шаг изменения:

$$\Phi_{30} = (Y_{max} - Y_{min}) / k = (4,309 - 2,667) / 6 = 0,274$$

Таблица 2.5а

Корреляционные таблицы (X_1-Y)

		No	ррслицион	пыс табли	цы (Л1-3)			
		$V(\Phi_{30})$						
X_1	2,667-	2,941-	3,215-	3,489-	3,763-	4,037-	$\mathbf{v}(Y)$	
	2,941	3,215	3,489	3,763	4,037	4,309		
	2,804	3,078	3,352	3,626	3,90	4,178		
1,099	2	-	4	2	1	-	9	
1,386	4	3	-	-	1	1	9	
1,609	3	3	-	3	-	-	9	
$\mathbf{v}(X_1Y)$	9	6	4	5	2	1	27	

Таблица 2.5б

Корреляционные таблицы (X_2-Y)

		$V(\Phi_{30})$						
X_2	2,667-	2,941-	3,215-	3,489-	3,763-	4,037-	$\mathbf{v}(Y)$	
	2,941	3,215	3,489	3,763	4,037	4,309		
	2,804	3,078	3,352	3,626	3,90	4,178		
-0,693	2	3	3	-	-	1	9	
-0,288	2	2	1	3	1	-	9	
0	5	1	-	2	1	-	9	
$\mathbf{v}(X_2Y)$	9	6	4	5	2	1	27	

Таблица 2.5в

Корреляционные таблицы (X_3-Y)

		$V(\Phi_{30})$							
X_3	2,667-	2,941-	3,215-	3,489-	3,763-	4,037-	v (<i>Y</i>)		
	2,941	3,215	3,489	3,763	4,037	4,309			
	2,804	3,078	3,352	3,626	3,90	4,178			
1,099	5	2	2	-	-	-	9		
1,386	4	1	1	3	-	-	9		
1,609	-	3	1	2	2	1	9		
$\mathbf{v}(X_3Y)$	9	6	4	5	2	1	27		

Таблица 2.5г

Корреляционные таблицы (Х₄-У)

			У (Φ_{30})						
X_4	2,667-	2,941-	3,215-	3,489-	3,763-	4,037-	$\mathbf{v}(Y)$			
	2,941	3,215	3,489	3,763	4,037	4,309				
	2,804	3,078	3,352	3,626	3,90	4,178				
-0,693	3	-	2	3	-	1	9			
-0,288	3	2	1	1	2	-	9			
0	3	4	1	1	-	-	9			
$\mathbf{v}(X_4 Y)$	9	6	4	5	2	1	27			

Таблица 2.5д

Корреляционные таблицы (X_1-X_2)

		$\mathbf{v}(X_1)$		
X_2	1,099	1,386	1,609	
-0,693	3	3	3	9
-0,288	3	3	3	9
0	3	3	3	9
$\mathbf{v}(X_1X_2)$	9	9	9	27

Таблица 2.5е

Корреляционные таблицы (X₁-X₃)

		$\mathbf{v}(X_1)$							
X_3	1,099	1,386	1,609						
1,099	3	3	3	9					
1,386	3	3	3	9					
1,609	3	3	3	9					
$\mathbf{v}(X_1X_3)$	9	9	9	27					

Таблица 2.5ж

Корреляционные таблицы (X_1-X_4)

		$\mathbf{v}(X_1)$		
X_4	1,099	1,386	1,609	
-0,693	3	3	3	9
-0,288	3	3	3	9
0	3	3	3	9
$\mathbf{v}(X_4X_1)$	9	9	9	27

Таблица 2.53

Корреляционные таблицы (Х2-Х3)

110 Petring 110 110 112 113									
		X_2							
X_3	-0,693	-0,288	0	$\mathbf{v}(X_2)$					
1,099	3	3	3	9					
1,386	3	3	3	9					
1,609	3	3	3	9					
$\mathbf{v}(X_2X_3)$	9	9	9	27					

Таблица 2.5и

Корреляционные таблицы (X_2-X_4)

		$\mathbf{v}(X_2)$		
X_4	-0,693	-0,288	0	
-0,693	3	3	3	9
-0,288	3	3	3	9
0	3	3	3	9
$\mathbf{v}(X_2X_4)$	9	9	9	27

Таблица 2.5к

Корреляционные таблицы (X_3-X_4)

			$\mathbf{v}(X_3)$	
X_4	1,099	1,386	1,609	
-0,693	3	3	3	9
-0,288	3	3	3	9
0	3	3	3	9
$v(X_4X_3)$	9	9	9	27

1. Математическое ожидание

$$\bar{Y} = 1/N \sum Y_i v(Y) = 1/27 \begin{pmatrix} 2,804 \cdot 9 + 3,078 \cdot 6 + 3,352 \cdot 4 + \\ +3,626 \cdot 5 + 3,9 \cdot 2 + 4,178 \cdot 1 \end{pmatrix} = 3,23$$

$$\ddot{X}_1 = 1/N \sum \ddot{X}_i v(X_1 Y) = 1/27(1,099 \cdot 9 + 1,386 \cdot 9 + 1,609 \cdot 9) = 1,365$$

$$\ddot{X}_2 = -0,327; \quad \ddot{X}_3 = 1,365; \quad \ddot{X}_4 = -0,327$$

2. Дисперсия

$$\sigma_{y}^{2} = 1/(n-1)\sum \left(Y_{i} - \bar{Y}\right)^{2} \upsilon_{(xy)} =$$

$$= 1/26 \left[(2,804 - 3,23)^{2} \cdot 9 + (3,078 - 3,23)^{2} \cdot 6(3,352 - 3,23)^{2} \cdot 4 + \right] = 0,17$$

$$\sigma_{y} = 0,41$$

$$\sigma_{y}^{2} = 1/(n-1)\sum \left(X_{1i} - \ddot{X}_{I}\right)^{2} \upsilon_{(X1)} =$$

$$= 1/26 \left[(1,099 - 1,365)^{2} \cdot 9 + (1,386 - 1,365)^{2} \cdot 9 + (1,609 - 1,365)^{2} \cdot 9 \right] = 0,045$$

$$\sigma_{X1} = 0,212; \sigma_{X2} = 0,29; \sigma_{X3} = 0,212; \ \sigma_{X4} = 0,29$$

3. Коэффициенты корреляции

$$\begin{split} r_{yx1} &= \left[1/(N-1)\sigma_{y}\sigma_{x1} \right] \sum \left(Y_{i} - \bar{Y} \right) \left(X_{1} - \ddot{X}_{1} \right) \upsilon_{(XiV)} = \\ &= 1/(26 \cdot 0, 41 \cdot 0, 212) [(2,804 - 3,23)(1,099 - 1,365)2 + \\ &+ (3,352 - 3,23)(1,099 - 1,365)4 + (3,626 - 3,23)(1,099 - 1,365)2 + \\ &+ (3,9 - 3,23)(1,099 - 1,365) + \\ &+ \left((2,804 - 3,23)(1,386 - 1,365)4 + (3,078 - 3,23)(1,386 - 1,365)3 + \\ &+ (3,9 - 3,23)(1,386 - 1,365)1 + (4,178 - 3,23)(1,386 - 1,365)1 + \\ &+ (2,804 - 3,23)(1,609 - 1,365)3 + (3,078 - 3,23)(1,609 - 1,365)3 \right] = 0,395 \\ &r_{yx2} = -0,078; \ r_{yx3} = 0,55; \ r_{yx4} = -0,27. \end{split}$$

$$\begin{split} R_{x1x2} &= \left[1/(N-1)\sigma_{x1}\sigma_{x2} \right] \Sigma \left(X_{1i} - \ddot{X}_1 \right) \left(X_{2i} - \ddot{X}_2 \right) \upsilon_{(X1X2)} = \\ & \left[(1,099-1,365) \left(-0,693+0,327 \right) 3 + \right. \\ & \left. + \left(1,386-1,365 \right) \left(-0,693+0,327 \right) 3 + \right. \\ & \left. + \left(1,609-1,365 \right) \left(-0,693+0,327 \right) 3 + \right. \\ & \left. + \left(1,099-1,365 \right) \left(-0,288+0,327 \right) 3 + \right. \\ & \left. + \left(1,609-1,365 \right) \left(-0,288+0,327 \right) 3 + \right. \\ & \left. + \left(1,609-1,365 \right) \left(0+0,327 \right) 3 + \right. \\ & \left. + \left(1,386-1,365 \right) \left(0+0,327 \right) 3 + \right. \\ & \left. + \left(1,386-1,365 \right) \left(0+0,327 \right) 3 + \right. \\ & \left. + \left(1,609-1,365 \right) \left(0+0,327 \right) 3 + \right. \\ & \left. + \left(1,609-1,365 \right) \left(0+0,327 \right) 3 + \right. \end{split}$$

$$r_{x_1x_3} = -0.0012$$
; $r_{x_1x_4} = 6.10^{-5}$; $r_{x_2x_3} = 6.10^{-5}$; $r_{x_2x_4} = -0.0012$; $r_{x_3x_4} = 6.10^{-5}$

4. Корреляционная таблица

	У	X_1	X_2	X_3	X_4
У	1	0,395	-0,078	0,55	-0,27
X_1		1	6·10 ⁻⁵	-0,0012	6.10^{-5}
X_2			1	6·10 ⁻⁵	-0,0012
X_3				1	6.10-5
X_4					1

5. Коэффициенты уравнения регрессии

$$\begin{split} r_{yx1}\sigma_y &= a_1\sigma_{X1}r_{x1x1} + a_2\sigma_{X2}r_{x1x2} + a_3\sigma_{X3}r_{x1x3} + a_4\sigma_{X4}r_{x1x4} \\ r_{yx2}\sigma_y &= a_1\sigma_{X1}r_{x1x2} + a_2\sigma_{X2}r_{x2x2} + a_3\sigma_{X3}r_{x2x3} + a_4\sigma_{X4}r_{x2x4} \\ r_{yx3}\sigma_y &= a_1\sigma_{X1}r_{x1x3} + a_2\sigma_{X2}r_{x2x3} + a_3\sigma_{X3}r_{x3x3} + a_4\sigma_{X4}r_{x3x4} \\ r_{yx4}\sigma_y &= a_1\sigma_{X1}r_{x1x4} + a_2\sigma_{X2}r_{x2x4} + a_3\sigma_{X3}r_{x3x4} + a_4\sigma_{X4}r_{x4x4} \end{split}$$

Подставляем значения:

$$0,395 \cdot 0,41 = a_1 \cdot 0,212 \cdot 1 + a_2 \cdot 0,29 \cdot 6 \cdot 10^{-5} + a_3 \cdot 0,212 \cdot (-0,0012) + a_4 \cdot 0,29 \cdot 6 \cdot 10^{-5}$$

$$\begin{aligned} &-0,078 \cdot 0,41 = a_1 \cdot 0,212 \cdot 6 \cdot 10^{-5} + a_2 \cdot 0,29 \cdot 1 + a_3 \cdot 0,212 \cdot 6 \cdot 10^{-5} + \\ &+ a_4 \cdot 0,29 \cdot \left(-0,0012\right) \\ &0,55 \cdot 0,41 = a_1 \cdot 0,212 \cdot \left(-0,0012\right) + a_2 \cdot 0,29 \cdot 6 \cdot 10^{-5} + a_3 \cdot 0,212 \cdot 1 + \\ &+ a_4 \cdot 0,29 \cdot 6 \cdot 10^{-5} \\ &-0,27 \cdot 0,41 = a_1 \cdot 0,212 \cdot 6 \cdot 10^{-5} + a_2 \cdot 0,29 \cdot \left(-0,0012\right) + a_3 \cdot 0,212 \cdot 6 \cdot 10^{-5} + \\ &+ a_4 \cdot 0,29 \cdot 1 \end{aligned}$$

Решаем систему уравнений и получаем:

$$a_1 = 0,76$$
; $a_2 = -0,11$; $a_3 = 1,06$; $a_4 = -0,38$

$$a_0 = \overline{Y} - \sum a_i X_i = 3,23 - \begin{pmatrix} 0,76 \cdot 1,365 + 0,11 \cdot 0,327 + \\ 1,06 \cdot 1,365 + 0,327 \cdot 0,38 \end{pmatrix} = 0,5854$$

Таким образом,

$$\ln \varPhi_{30} = 0.5854 + 0.76 \ln X_1 - 0.11 \ln X_2 + 1.06 \ln X_3 - 0.38 \ln X_4$$

Библиографический список

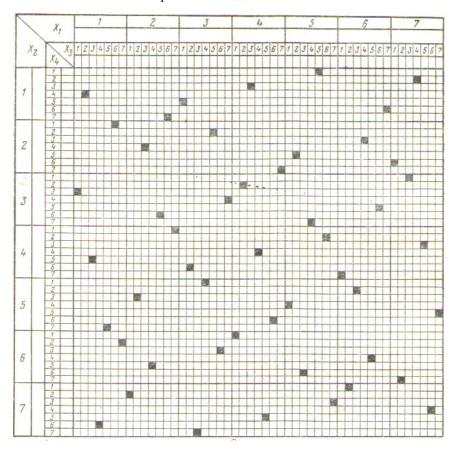
- 1. *Булатов А.И*. Буровые промывочные и тампонажные растворы: учеб. Пособие для вузов/ А.И. Булатов, П.П. Макаренко, Ю.М. Проселков. М.: Недра, 1999. 424 с.
- 2. *Булатов А. И.* Бурение горизонтальных скважин/ А. И. Булатов, Ю. В. Проселков. Краснодар: Советская Кубань. 2008. 424 с.
- 3. *Грей Дж. Р.* Состав и свойства буровых агентов/ Дж. Р. Грей, Г. С. Г. Дарли М.: Недра, 1985. 509 с.
- 4. *Каменских С. В.* Осложнения и аварии при бурении скважин: Учебное пособие/С. В. Каменских, Ю. Л. Логачев, А. В. Нор [и др.]. Ухта: УГТУ. 2015. $160 \, \mathrm{c}$.
- 5. *Мирзаджанзаде А. Х.* Анализ и проектирование показателей бурения/ А. Х. Мирзаджанзаде, Н. А. Сидоров, С. А. Ширинзаде. М.: Недра, 1976. 237 с.
- 6. *Подгорнов В.М.* Заканчивание скважин = Oil and gas well completion : В 2 ч. : Ч. 1., 2008. 264 с.
- 7. Подгорнов В. М. Заканчивание скважин = Oil and gas well completion : В 2 ч. : Ч. 2., 2008. 253 с.
- 8. Резниченко И. Н. Приготовление, обработка и очистка буровых растворов. М.: Недра, 1982. 230 с.
- 9. Уляшева Н.М. Технология буровых жидкостей: учеб. Пособие для вузов / Н.М. Уляшева: учеб. Пособие для вузов. Ухта. 2008. $164 \, \mathrm{c}$.
- 10. Уляшева Н. М. Физико-химические методы борьбы с осложнениями. Учебное пособие/Н. М. Уляшева, В. Ю. Близнюков, Н.Г. Деминская. Ухта: УГТУ. 2016. 119 с.

Приложение 1

Значения F-критерия Фишера

f ₂ =	$f_1 = f$									
n-1				Урове	ень значі	имости 0	,01			
	1	2	3	4	5	6	8	12	24	8
1	4052	4999	5403	5625	5764	5859	5981	6106	6234	6366
2	98,5	99,0	99,2	99,3	99,3	99,4	99,4	99,4	99,5	99,5
3	34,1	30,8	29,5	28,7	28,2	27,9	27,5	27,1	26,6	26,1
4	21,2	18,0	16,7	16,0	15,5	15,2	14,8	14,4	13,9	13,5
5	16,3	13,3	12,1	11,4	11,0	10,7	10,3	9,9	9,5	9,0
6	13,7	10,9	9,8	9,2	8,8	8,5	8,1	7,7	7,3	6,9
7	12,3	9,6	8,5	7,9	7,5	7,2	6,8	6,5	6,1	5,7
8	11,3	8,7	7,6	7,0	6,6	6,4	6,0	5,7	5,3	4,9
9	10,6	8,0	7,0	6,4	6,1	5,8	5,5	5,1	4,7	4,3
10	10,0	7,6	6,6	6,0	5,6	5,4	5,1	4,7	4,3	3,9
11	9,7	7,2	6,2	5,7	5,3	5,1	4,7	4,4	4,0	3,6
12	9,3	6,9	6,0	5,4	5,1	4,8	4,5	4,2	3,8	3,4
13	9,1	6,7	5,7	5,2	4,9	4,6	4,3	4,0	3,6	3,2
14	8,9	6,5	5,6	5,0	4,7	4,5	4,1	3,8	3,4	3,0
15	8,7	6,4	5,4	4,9	4,6	4,3	4,0	3,7	3,3	2,9
16	8,5	6,2	5,3	4,8	4,4	4,2	3,9	3,6	3,2	2,8
17	8,4	6,1	5,2	4,7	4,3	4,1	3,8	3,5	3,1	2,7
18	8,3	6,0	5,1	4,6	4,3	4,0	3,7	3,4	3,0	2,6
19	8,2	5,9	5,0	4,5	4,2	3,9	3,6	3,3	2,9	2,4
20	8,1	5,9	4,9	4,4	4,1	3,9	3,6	3,2	2,9	2,4
22	7,9	5,7	4,8	4,3	4,0	3,8	3,5	3,1	2,8	2,3
24	7,8	5,6	4,7	4,2	3,9	3,7	3,3	3,0	2,7	2,2
26	7,7	5,5	4,6	4,1	3,8	3,6	3,3	3,0	2,6	2,1
28	7,6	5,5	4,6	4,1	3,8	3,5	3,2	2,9	2,5	2,1
30	7,6	5,4	4,5	4,0	3,7	3,5	3,2	2,8	2,5	2,0
40	7,3	5,2	4,3	3,8	3,5	3,3	3,0	2,7	2,3	1,8
60	7,1	5,0	4,1	3,7	3,3	3,1	2,8	2,5	2,1	1,6
120	6,9	4,8	4,0	3,5	3,2	3,0	2,7	2,3	2,0	1,4
∞	6,6	4,6	3,8	3,3	3,0	2,8	2,5	2,2	1,8	1,0

Продолжение приложения 1


\mathbf{f}_2					\mathbf{f}_1				
			7	ровень	значим	ости 0,0	5		
	1	2	3	4	5	6	12	24	∞
1	164,4	199,5	215,7	224,6	230,2	234,0	244,9	249,0	254,3
2	18,5	19,2	19,2	19,3	19,3	19,3	19,4	19,5	19,5
3	10,1	9,6	9,3	9,1	9,0	8,9	8,7	8,6	8,5
4	7,7	6,9	6,6	6,4	6,3	6,2	5,9	5,8	5,6
5	6,6	5,8	5,4	5,2	5,1	5,0	4,7	4,5	4,4
6	6,0	5,1	4,8	4,5	4,4	4,3	4,0	3,8	3,7
7	5,6	4,7	4,4	4,1	4,0	3,9	3,6	3,4	3,2
8	5,3	4,5	4,1	3,8	3,7	3,6	3,3	3,1	2,9
9	5,1	4,3	3,9	3,6	3,5	3,4	3,1	2,9	2,7
10	5,0	4,1	3,7	3,5	3,3	3,2	2,9	2,7	2,5
11	4,8	4,0	3,6	3,4	3,2	3,1	2,8	2,6	2,4
12	4,8	3,9	3,5	3,3	3,1	3,0	2,7	2,5	2,3
13	4,7	3,8	3,4	3,2	3,0	2,9	2,6	2,4	2,2
14	4,6	3,7	3,3	3,1	3,0	2,9	2,5	2,3	2,1
15	4,5	3,7	3,3	3,1	2,9	2,8	2,5	2,3	2,1
16	4,5	3,6	3,2	3,0	2,9	2,7	2,4	2,2	2,0
17	4,5	3,6	3,2	3,0	2,8	2,7	2,4	2,2	2,0
18	4,4	3,6	3,2	2,9	2,8	2,7	2,3	2,1	1,9
19	4,4	3,5	3,1	2,9	2,7	2,6	2,3	2,1	1,8
20	4,4	3,5	3,1	2,9	2,7	2,6	2,3	2,1	1,8
22	4,3	3,4	3,1	2,8	2,7	2,6	2,2	2,0	1,8
24	4,3	3,4	3,0	2,8	2,6	2,5	2,2	2,0	1,7
26	4,2	3,4	3,0	2,7	2,6	2,4	2,1	1,9	1,7
28	4,2	3,3	2,9	2,7	2,6	2,4	2,1	1,9	1,6
30	4,2	3,3	2,9	2,7	2,5	2,4	2,1	1,9	1,6
40	4,1	3,2	2,9	2,6	2,5	2,3	2,0	1,8	1,5
60	4,0	3,2	2,8	2,5	2,4	2,3	1,9	1,7	1,4
120	3,9	3,1	2,7	2,5	2,3	2,2	1,8	1,6	1,3
∞	3,8	3,0	2,6	2,4	2,2	2,1	1,8	1,5	1,0

Окончание приложения 1

$\mathbf{f_2}$					\mathbf{f}_1				
				Уровени	ь значим	ости 0,2			
	1	2	3	4	5	6	12	24	∞
1	9,5	12,0	13,1	13,7	14,0	14,3	14,9	15,2	15,6
2	3,6	4,0	4,2	4,2	4,3	4,3	4,4	4,4	4,5
3	2,7	2,9	2,9	3,0	3,0	3,0	3,0	3,0	3,0
4	2,4	2,5	2,5	2,5	2,5	2,5	2,5	2,4	2,4
5	2,2	2,3	2,3	2,2	2,2	2,2	2,2	2,2	2,1
6	2,1	2,1	2,1	2,1	2,1	2,1	2,0	2,0	2,0
7	2,0	2,0	2,0	2,0	2,0	2,0	1,9	1,9	1,8
8	2,0	2,0	2,0	1,9	1,9	1,9	1,8	1,8	1,7
9	1,9	1,9	1,9	1,9	1,9	1,8	1,8	1,7	1,7
10	1,9	1,9	1,9	1,8	1,8	1,8	1,7	1,7	1,6
11	1,9	1,9	1,8	1,8	1,8	1,8	1,7	1,6	1,6
12	1,8	1,8	1,8	1,8	1,7	1,7	1,7	1,6	1,5
13	1,8	1,8	1,8	1,8	1,7	1,7	1,6	1,6	1,5
14	1,8	1,8	1,8	1,7	1,7	1,7	1,6	1,6	1,5
15	1,8	1,8	1,8	1,7	1,7	1,7	1,6	1,5	1,5
16	1,8	1,8	1,7	1,7	1,7	1,6	1,6	1,5	1,4
17	1,8	1,8	1,7	1,7	1,7	1,6	1,6	1,5	1,4
18	1,8	1,8	1,7	1,7	1,6	1,6	1,5	1,5	1,4
19	1,8	1,8	1,7	1,7	1,6	1,6	1,5	1,5	1,4
20	1,8	1,8	1,7	1,7	1,6	1,6	1,5	1,5	1,4
22	1,8	1,7	1,7	1,6	1,6	1,6	1,5	1,4	1,4
24	1,7	1,7	1,7	1,6	1,6	1,6	1,5	1,4	1,3
26	1,7	1,7	1,7	1,6	1,6	1,6	1,5	1,4	1,3
28	1,7	1,7	1,7	1,6	1,6	1,6	1,5	1,4	1,3
30	1,7	1,7	1,6	1,6	1,6	1,5	1,5	1,4	1,3
40	1,7	1,7	1,6	1,6	1,5	1,5	1,4	1,4	1,2
60	1,7	1,7	1,6	1,6	1,5	1,5	1,4	1,3	1,2
120	1,7	1,6	1,6	1,5	1,5	1,5	1,4	1,3	1,1
∞	1,6	1,6	1,6	1,5	1,5	1,4	1,3	1,2	1,0

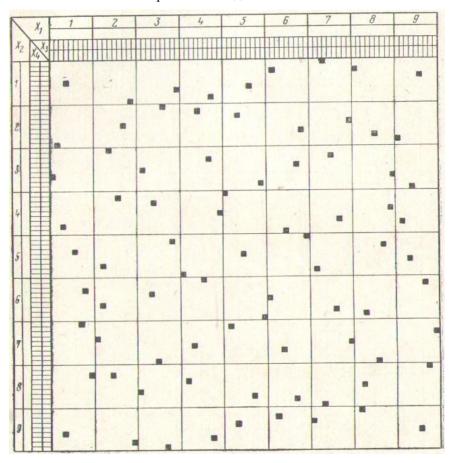

Приложение 2

Схема комбинационного квадрата для четырех факторов в семи вариантов каждого из них

Продолжение приложения 2

Схема комбинационного квадрата для четырех факторов в девяти вариантов каждого из них

Окончание приложения 2

Схема комбинационного треугольника для четырех факторов с неодинаковым числом вариантов каждого из них

1			1								2								3											
1			1 2 3 4 5 6 7 8 9								1 2 3 4 5 6 7 8 9							1 2 3 4 5 6 7 8 9												
Xz		X4	X3	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
		1													100															
1		2																												
		4							TO																					
		2 3 4 5 6 7						MARCE																						
2		1		3																-	N///					11				
		2 3 4 5 6 7			70															20					N.			81		
		4								100	47								A											300
		6																		1	680									
3		1			45											8														
		3															100													
		5			E.																									
		2 3 4 5 6																												
4		1 2 3 4 5 6																	5								130			
		3		200							9229								2010						100					
		5														7														
		7							1				10%	Bulling						7										
5		1 2 3 4 5 6						eave						0.0					Sec.											
		3							-100																					
		5			4															-				TA I						
		7	77		No.																									7

Содержание

Задание №1 Оптимизация состава бурового раствора на основе по ного факторного анализа	
Задание №2 Экспериментальная разработка рецептуры буровых жидкостей	
Библиографический список	23
Приложение 1	.24
Приложение 2	.27