Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Санкт-Петербургский горный университет

Кафедра теплотехники и теплоэнергетики

ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ В ТЕПЛОЭНЕРГЕТИКЕ

Методические указания к лабораторным работам для студентов направления подготовки 13.04.01

УДК 621.311.22:628 (073)

ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ В ТЕПЛОЭНЕРГЕТИКЕ: Методические указания к лабораторным работам / Санкт-Петербургский горный университет. Сост.: *В.М. Пискунов* Санкт-Петербургский горный университет. СПб. 2021. 29 с.

В метолических указаниях содержатся лабораторные выполнение которых позволяет закрепить теоретический материал лекций, а также приобрести практические навыки в области использования технологий подавления минимизации вредных факторов И при эксплуатации теплоэнергетического оборудования. окружающей охраны среды рационального использования природных ресурсов в теплоэнергетике.

Предназначены для студентов магистратуры направления 13.04.01 «Теплоэнергетика и теплотехника».

Научный редактор проф. В.А. Лебедев

Рецензент к.т.н. Э.И. Гудков (ОАО «НПО ЦКТИ»)

ВВЕДЕНИЕ

Дисциплина «Природоохранные технологии в теплоэнергетике» является обязательной дисциплиной для студентов, изучается с целью приобретения знаний, умений и навыков в области использования технологий подавления и минимизации вредных факторов при эксплуатации теплоэнергетического оборудования, охраны окружающей среды и рационального использования природных ресурсов в теплоэнергетике.

ПРАВИЛА ПРОВЕДЕНИЯ И СДАЧИ РАБОТ

Выбирается вариант задания с исходными числовыми данными. Переписывается условие задания полностью с выбранными числовыми данными.

Производится расчет с указанием формул и расшифровкой входящих в них обозначений и указаний единиц международной системы (СИ).

По необходимости расчеты дополняются краткими пояснениями и выводами.

Лабораторные работы выполняется в отдельной тетради или в сброшюрованных листах формата A4 с указанием на титульном листе фамилии, инициалов, шифра студента, а также факультета и специальности.

Лабораторная работа №1

Тема: «Аппараты сухой механической очистки запыленных газов (выбросов). Расчет циклонов»

Цель работы

Приобретение навыков по выбору и расчету циклонов.

Вводная часть

Аппаратами сухой механической очистки запыленных газов (выбросов) являются пылеосадительные камеры, инерционные и ротационные пылеуловители, циклоны, вихревые пылеуловители, пористые фильтры [3,4].

Циклоны являются наиболее распространенными установками сухого пылеулавливания. Принцип работы — оседание частиц под воздействием центробежных сил и сил тяжести. При вводе (рис. 1.1) через тангенциальный патрубок 1 частицы отжимаются к внутренней стенке корпуса 3 и, теряя скорость, выпадают в бункер 4, откуда выводятся через выход 5.

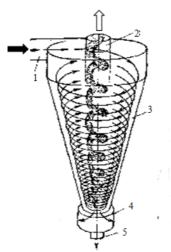


Рис. 1.1. Циклон:

1 — патрубок тангенциальный входной; 2 — патрубок выходной; 3 — стенка; 4 — бункер; 5 — патрубок пылевыпускной

Очищенный газ выводится через выхлопную трубу 2. Центро-

бежный эффект сильнее проявляется у крупных частиц, поэтому циклоны предназначены для грубой механической очистки выбросов от крупной и тяжелой пыли, например, для улавливания золы, образующейся при сжигании топлива в котлах тепловых станций.

В промышленности используют циклоны, рассчитанные на скорость потока от 5 до 20 м/с. Эффективность циклонов составляет 0,98 для частиц размеров 30-40 мкм; 0,8 для частиц размеров 10 мкм; 0,6 для частиц размеров 4-5 мкм. Производительность циклонов лежит в диапазоне от нескольких сот до десятков тысяч кубометров в час.

Преимуществом циклонов являются простота конструкции, отсутствие движущихся частей и небольшие размеры.

Недостатками являются затраты энергии на вращение потока и абразивный износ частей аппарата пылью.

Для большей эффективности используют несколько циклонов небольшого диаметра, собранные в секции батареи — батарейные циклоны. Циклоны соединяются между собой подводящими патрубками и сборными камерами. Для нормальной работы циклона необходима герметичность бункера для исключения выноса пыли с потоком из-за подсоса наружного воздуха.

Конструктивно циклоны бывают цилиндрические и конические.

Цилиндрические циклоны типа ЦН-15 (15- угол наклона входной патрубки: α =15°) изготавливаются из углеродистой или низколегированной стали. Они предназначены для предварительной очистки выбросов от пыли перед фильтрами и электрофильтрами.

Конические циклоны типа СК предназначены для очистки выбросов от сажи, обладают повышенной эффективностью из-за большего гидравлического сопротивления. Бункеры циклонов имеют цилиндрическую форму диаметром 1,5 \boldsymbol{D} для цилиндрических и 1,2 \boldsymbol{D} для конических циклонов. Высота цилиндрической части бункера составляет 0,8 \boldsymbol{D} .

Для расчета циклона необходимо иметь следующие исходные данные: объем очищаемого газа Q, м³/с; плотность газа при рабочих условиях ρ , кг/м³; вязкость при рабочей температуре μ , Па с; дисперс-

ный состав пыли d_{50} ; входную концентрацию пыли $c_{\text{вх}}$, г/м³; требуемую эффективность очистки η .

Расчет циклонов ведут методом последовательных приближений.

Методика расчета

1. Определяют оптимальную скорость движения газа $w_{\text{опт}}$ в зависимости от типа циклона (табл. 1.1).

Таблица 1.1 Оптимальная скорость движения газа wonm в циклоне

Тип циклона	ЦН-24	ЦН-15	ЦН-11	СДК-ЦН-33	СК-ЦН-34	СК-ЦН-34м
w опт, м/с	4,5	3,5	3,5	2,0	1,7	2,0

2. Рассчитывают диаметр циклона:

$$\mathbf{D} = \sqrt{\frac{4Q}{\pi w_{\text{ont}}}}.\tag{1.1}$$

Полученное значение необходимо округлить до ближайшего типового значения. В России принят следующий ряд внутреннего типового диаметра циклонов *D*, мм: 150; 200; 300; 400; 450; 500; 600; 700; 800;900; 1000; 1200; 1400;1600; 1800; 2000; 2400; 3000.

Если значение D превышает максимального типового значения, то необходимо применять два или более параллельно установленных циклонов.

3. Рассчитывают действительную скорость потока в циклоне:

$$w = 4Q/\pi ND^2 \tag{1.2}$$

где N — число циклонов; ${\bf w}$ не должно отклоняться от $w_{\rm ont}$ более чем на 15%.

4. Рассчитывают коэффициент гидравлического сопротивления:

$$R = k_1 k_2 R_{500}, (1.3)$$

где k_l и k_2 — коэффициенты, зависящие от D, $c_{\rm вx}$ и типа циклона (табл. 1.2 и 1.3); R_{500} — коэффициент гидравлического сопротивления при D=500 мм (табл. 1.4).

5. Рассчитывают значение гидравлического сопротивления:

$$\Delta P = P_{ex} - P_{ebx} = \frac{1}{2} R \rho_{e} w^{2}. \tag{1.4}$$

6. Определяют эффективность очистки:

$$\eta = 0.5 (1 + \Phi(x)),$$
(1.5)

где $\Phi(x)$ – табличная (табл. 1.5) функция параметра x:

$$x = 0.8 \cdot lg\left(\frac{d_{50}}{d_{T50}}\right)$$
 (1.6)

 $\begin{tabular}{ll} \it Taблицa 1.2 \\ \it 3 \it haчения k_1 \ при различных D и типов циклонов \\ \end{tabular}$

Twy www.	D , mm						
Тип циклона	150	200	300	450	>500		
ЦН-11	0,94	0,95	0,96	0,99	1,0		
ЦН-15, ЦН-24	0,85	0,90	0,93	1,0	1,0		
СДК-ЦН-33, СК-ЦН-34 и 34м	1,0	1,0	1,0	1,0	1,0		

Тип инисполо	c_{bx} , r/M^3							
Тип циклона	0	10	20	40	80	120	150	
ЦН-11	1	0,96	0,94	0,92	0,90	0,87	-	
ЦН-15	1	0,93	0,92	0,91	0,90	0,87	0,86	
ЦН-24	1	0,95	0,93	0,92	0,90	0,87	0,86	
СДК-ЦН-33	1	0,81	0,785	0,78	0,77	0,76	0,745	
СК-ЦН-34	1	0,98	0,947	0,93	0,915	0,91	0,90	
СК-ЦН-34м	1	0,99	0,97	0,95	-	-	-	

Таблица 1.4

Значения $R_{500}\,$ в зависимости от типов циклонов

	Выхло	п в:		Выхлоп в:		
Тип циклона			Тип циклона	атмосферу	гидр. сеть	
ЦН-11	245	250	СДК-ЦН-33	520	600	
ЦН-15	155	163	СК-ЦН-34	1050	1150	
ЦН-24	75	80	СК-ЦН-34м	-	2000	

Таблица 1.5 Значения функции $\Phi(x)$ в зависимости от параметра x

х	-2,7	-2,0	-1,6	-1,4	-1,2	-1,0	-0,8	-0,6	-0,2
$\Phi(x)$	0,004	0,023	0,055	0,081	0,115	0,159	0,212	0,274	0,421
х	0	0,2	0,4	0,6	0,8	1,2	1,6	1,8	2,7
$\Phi(x)$	0,5	0,579	0,655	0,726	0,788	0,885	0,964	0,964	0,997

Значение d_{50} определяется по формуле:

$$d_{50} = d_{m50} \sqrt{\frac{D}{D_{\rm T}} \frac{\rho_{\rm qT}}{\rho_{\rm q}} \frac{\mu}{\mu_{\rm T}} \frac{w_{\rm T}}{w}}, \qquad (1.7)$$

где: $\rho_{\text{ч}}$ – плотность частиц; μ – вязкость, w – скорость потока; $D_{\text{т}}$ = 600 мм; $\rho_{\text{чт}}$ = 1930 кг/м³ ; $\mu_{\text{г}}$ = 22,2·10⁻⁶ Па·с; $w_{\text{т}}$ = 3,5 м/с (индекс т означает типовое значение параметра); значение $d_{\text{т}50}$ приведено в табл. 1.6.

Таблица 1. 6

Значения параметра $d_{m50}\,$ в зависимости от типа циклона

Тип	ЦН-11	ЦН-15	ЦН-24	СДК-ЦН-33	СК-ЦН-34	СК-ЦН-34м
d_{m50}	8,5	4,5	3,65	2,31	1,95	1,3

7. Осуществляют выбор циклона. Если расчетное h меньше требуемого, то необходимо выбрать другой циклон с большим гидравлическим сопротивлением R. Можно пользоваться формулой:

$$\frac{R_1}{R_2} = \left(\frac{1 - \eta_1}{1 - \eta_2}\right)^2 \frac{w_1}{w_2} \frac{D_1}{D_2} \tag{1.8}$$

где индексы 1 и 2 соответствуют двум различным циклонам.

8. Рассчитывают конструкционные размеры циклона в мм (рис.1.2, табл. 1.7) в соответствии с диаметром D (в мм) выбранного циклона:

$$y = k \cdot D, \tag{1.9}$$

где y — конкретный параметр циклона (диаметр d, ширина b, высота H и т.д.); k — коэффициент пропорциональности (табл. 1.7).

9. Радиус улитки рассчитывается по формуле:

$$\rho = D/2 + b\varphi/2\pi, \tag{1.10}$$

где b — ширина входного патрубка; $\varphi = 135^{\circ} = 2,35$ рад

Tаблица 1.7 Значения коэффициента пропорциональности ${\it k}$ в зависимости от типа циклона

Циклон Параметр у	ЦН- 11	ЦН- 15	ЦН- 24	СДК- ЦН- 33	СК-ЦН- 34	СК-ЦН- 34м
Диаметр выхлопной d		0,59	1	0,334	0,34	0,22
Диаметр пылевыпускного отверстия d_1		0,3-0,4		0,334	0,23	0,18
Ширина входного патрубка b		0,2		0,264	0,214	0,18
Длина входного патрубка $\it l$			0,6			
Высота входного патрубка <i>а</i>	0,48	0,66	1,11	0,535	0,515	0,4
Высота выхлопной трубы h_m	1,56	1,74	2,11	0,535	0,515	0,4
Высота внешней части выхлопной трубы $h_{\scriptscriptstyle e}$	0,3	0,3	0,4		0,2-0,3	
Высота цилиндрической части $H_{\rm q}$	2,06	2,06	2,11	0,535	0,515	0,4
Высота конуса $H_{\scriptscriptstyle K}$	2,0	2,0	1,75	3,0	2,11	2,6
Высота установки фланца <i>h</i> _{фл}			0,1			
Общая высота циклона <i>Н</i>	4,38	4,56	4,26	3,835	2,925	3,3

^{10.} Начертить схему циклона (в зависимости от типа, рис. 1.2) с конструкционными размерами (в мм).

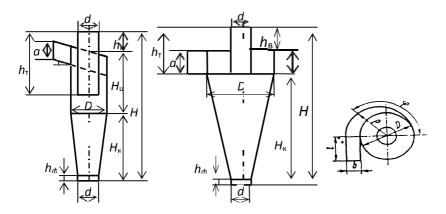


Рис. 1.2. Схема циклонов: а) цилиндрический; б) конический; в) вид сверху (улитка)

Таблица 1.8 Исходные данные (варианты)

		rica	одные да	аппыс (Б	арианты)	
№ вар.	Тип	Q , M^3/c	$c_{\rm bx}, \Gamma/{\rm M}^3$	$\rho_{\rm r}$, kg/m ³	$\rho_{\rm q}$, кг/м 3	μ ·10 ⁶ ,Πa×c	η
1, 10	ЦН-11	10	40	1,34	1930	22,2	0,95
2, 11	ЦН-11	11	120	1,35	2230	22,1	0,65
3, 12	ЦН-15	12	80	1,36	1650	22,0	0,75
4, 13	ЦН-15	13	10	1,37	1700	21,9	0,95
5, 14	ЦН-24	14	20	1,38	1750	21,8	0,90
6, 15	ЦН-24	15	40	1,39	1900	21,7	0,85
7, 16	СДК-ЦН- 33	8	150	1,33	2130	21,6	0,65
8, 17	СК-ЦН-34	5	80	1,32	2050	21,5	0,75
9, 18	СК-ЦН- 34м	1	40	1,31	2100	21,4	0,75

Контрольные вопросы

- 1. Классификация сухих механических пылеуловителей.
- 2. Принцип работы циклонов.
- 3. Групповые и батарейные циклоны.
- 4. Основные параметры циклонов.
- 5. Преимущества и недостатки циклонов.

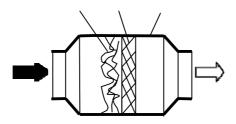
Лабораторная работа № 2

Тема: «Расчет пористых металлических фильтров для очистки выбросов от пыли»

Цель работы

Приобретение навыков и знаний по расчету и конструкции пористых фильтров

Вволная часть


Фильтры широко используются для тонкой очистки промышленных выбросов. Процесс фильтрации основан на задержании частиц примесей в пористых перегородках при движении дисперсных систем через них. Фильтры применяются для очистки выбросов от пыли (с концентрацией до 150 мг/m^3), очистки воздуха, подаваемого в помещения (кондиционирования), очистки жидкостей от примесей и др. Эффективность очистки фильтрами зависит от размера частиц (d_u) и их скорости (v), размера пор (d_n), состояния поверхности фильтроэлемента и параметров газового потока.

Фильтры можно классифицировать по типу перегородки, конструкции и назначения. В фильтрах применяются перегородки различных типов [3,4]:

- 1. Полужесткие пористые материалы (вязаные сетки, прессованные спирали и стружка;
- 2. Жесткие пористые материалы (пористая керамика и металлы).
- 3. Гибкие пористые материалы (ткани, войлок, губчатая резина);
- 4. Зернистый слой (гравий, песок);

Фильтры 1 и 2 группы (рис. 2.1) представляет собой корпус 1 разделенный пористой перегородкой 2.

Задержанные частицы загрязнителя на поверхности перегородки образуют слой 3 и становятся частью фильтровой перегородки. Задерживание частиц происходит в результате эффекта касания, диффузионного, инерционного и гравитационного процессов.

Через некоторое время возникает необходимость удаления осадка, т.е. регенерация фильтра, так как по мере накопления частиц пористость уменьшается, а сопротивление увеличивается. Из фильтров третьего типа наиболее употребительны тканевые рукавные фильтры. В корпусе фильтра устанавливаются необходимое число рукавов, на которые подается запыленный воздух. Воздух проникает через ткань, а частицы пыли задерживаются. Через определенные время рукава продувают и встряхивают. Эффективность очистки достигает 0,99 для частиц размером более 0,5 мкм.

Процесс фильтрации характеризуется следующими параметрами: эффективность очистки; тонкость очистки; пористость; скорость фильтрации; пропускная способность; гидравлическое или аэродинамическое сопротивление.

Абсолютная тонкость очистки — это максимальный размер частиц, прошедших через фильтр. Номинальная тонкость очистки — это размер частиц, для которых фракционная эффективность очистки равна 0,97. Предпочтительный ряд: 1; 2; 5; 10; 16; 25 мкм и т.д.

Пористостью фильтрэлемента называется отношение объема пустот (V_Π) к полному объему фильтрэлемента (V):

$$\Pi = V_r/V$$
.

Скорость фильтрации — это отношение объемного расхода Q (${\rm M}^3/{\rm c}$) очищаемого вещества к площади фильтрующей поверхности ${\rm F}$ (${\rm M}^2$):

$$w=Q/F$$
, M/c .

Удельная массовая пропускная способность фильтра:

$$G=w\rho$$
, $\kappa \epsilon/(M^2c)$,

Где ρ - плотность очищаемого вещества, кг/м³.

Гидравлическое (аэродинамическое) сопротивление фильтра — это разность давлений на входе и выходе фильтра:

$$\Delta P = P_{ex} - P_{ebix}$$

При проектировании назначается начальное и конечное сопротивление фильтра. При достижении конечного сопротивления процесс фильтрации прекращается и фильтр подвергается регенерании.

Методика расчета

- 1. Выбирают материал для изготовления фильтрэлемента, исходя из условия эксплуатации фильтра, прочностных, коррозионных характеристик материала и экономичных соображений (или по варианту).
- 2. Определяют максимальный размер пор:

$$d_{n \text{ MAKC}} = 3 d_{mo \text{ abc}}, \text{ MKM}, \tag{2.1}$$

где $d_{mo\ abc}$ - абсолютная тонкость очистки, мкм.

3. Определяют средний размер пор:

$$d_{n cp} = 1,25 d_{n \text{ MAKC}} \Pi^{0,3}, \text{ MKM},$$
 (2.2)

где Π - пористость фильтрэлемента.

4. Определяют размер частиц порошка для изготовления фильтрэлемента:

$$d_{u\,cp} = d_{n\,cp}/\Pi^2, \text{ MKM.} \tag{2.3}$$

- 5. Назначают толщину фильтрэлемента h по технологическим и прочностным соображениям в пределах 0,25-5мм (обычно 1мм).
- 6. Находят скорость потока в порах:

$$w_n = \frac{\Delta P_{\text{Hal}} \cdot d_{\text{II,cp}}^2}{208 \cdot h \cdot \mu}, \text{ M/c},$$
 (2.4)

где $\Delta P_{{\scriptscriptstyle H}a^{\scriptscriptstyle H}}$ — начальное сопротивление фильтра, Πa ; μ - вязкость фильтруемого вещества, $\Pi a \cdot c$.

7. Определяют площадь фильтрации:

$$F = \frac{Q}{w_n \cdot \Pi}, \, M^2. \tag{2.5}$$

8. Определяют расчетное конечное сопротивление фильтра:

$$\Delta P_{\kappa_{OH,p}} = \frac{\Delta P_{\text{Hav}}}{h} \left[(1 - e^{-X}) \cdot \left(\frac{e^{Y} - 1}{A \cdot B} \right) + h \right], \, \Pi a, \quad (2.6)$$

где: $X=A\times B\times h$; $Y=A\times q_{ex}\times \tau$; $q_{ex}=c_{ex}/\rho_{u}$; $B=\frac{(1-\Pi_{0})\Pi}{w_{\phi}}$, с/м; $w_{\phi}=\Pi\times w_{n}$, м/с; A — опытный коэффициент, зависящий от размеров частиц и размер пор: для очистки газов $A=5,25\cdot 10^{3}$ с⁻¹, для очистки жидкостей A=10 с⁻¹; τ - время работы фильтра, c; $q_{\rm Bx}$ — объемное содержание твердых частиц в фильтруемом веществе на входе фильтра: $c_{\rm Bx}$ — концентрация загрязнителя, кг/м³; $\rho_{\rm q}$ — плотность частиц загрязнителя, кг/м³; $w_{\rm \phi}$ - скорость фильтрации, м/с; $\Pi_{\rm O}$ - пористость осадка (смотрите задание).

9. Определяют максимально допустимое время работы фильтра (если $\Delta P_{\text{кон,p.}}$ отличается от заданного $\Delta P_{\text{кон}}$):

$$\tau_{\rm M} = \frac{1}{\text{A} \cdot q_{\rm BX}} \cdot \ln \left[1 + \frac{\Delta P_{\rm KOH,p.}}{\Delta P_{\rm Hall}} \cdot \frac{X}{1 - e^{-X}} \right], c. \tag{2.8}$$

10. Определяют эффективность очистки:

$$\eta = \frac{q_{\text{BX}} - q_{\text{BbIX}}}{q_{\text{BX}}} \cdot 100\%,$$
(2.9)

где:
$$q_{\mathit{вых}} = \frac{1}{\text{A} \cdot \tau_{\text{M}}} \cdot ln\left(\frac{e^{Z} + e^{X} - 1}{e^{X}}\right)$$
; $Z = Aq_{\mathit{ex}}\tau_{\mathit{M}}$.

Если конечные данные (например, эффективность очистки) не удовлетворяют требованиям, то расчет производят вновь, изменив размеры фильтрэлемента или структурные свойства его материала.

Примечание: Единицы измерения величин в формулах необходимо пере-вести в одну систему: 1час=3600 с; 1c=1/3600 час; 1мкм= 10^{-6} м; 1мм= 10^{-3} м; 1мг=10-6 кг; 1кПа= 10^3 Па.

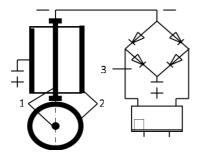
Задание. Рассчитать параметры пористого металлического фильтра для очистки воздуха от пыли глинозема, при нормальном атмосферном давлении ($P_{\text{атм}}=100~\text{к}\Pi \text{a}$) и температуры воздуха 20°C . Начальное сопротивление фильтра $\Delta P_{\text{нач}}=10~\text{к}\Pi \text{a}$. Плотность частиц загрязнителя $\rho_{\text{ч}}=3,9\cdot 10^3~\text{кг/м}^3$. Пористость осадка $\Pi_{\text{O}}=0,5$. Вязкость воздуха при 20°C : $\mu=18\cdot 10^{-6}~\Pi \text{a·c}$. Другие исходные данные по вариантам представлены в табл. 2.1: расход воздуха Q; концентрация пыли в воздухе $c_{\text{вх}}$; требуемая тонкость очистки $d_{\text{то абс}}$; наибольшее допустимое (конечное) сопротивление фильтра $\Delta P_{\text{кон}}$; время непрерывной работы фильтра τ .

Таблица 2.1

Исходные данные (варианты)

№ вар	О, м ³ /ч	с _{вх} ,	d _{то абс} , мкм	ΔР _{кон} , кПа	t, ч	Пористый материал	Форма частиц	П	h, мм
1, 10	150	5	5	20	50	Бронза	Сфера	0,33	1
2, 11	160	10	4	25	45	Ст50ХГ	Сфера	0,25	0,7
3, 12	120	15	3	15	40	Ст50ХГ	80%Сф	0,30	0,5
4, 13	140	20	10	20	35	Ст50ХГ	20%Сф	0,28	2
5, 14	100	25	16	15	30	Ст50ХГ	Лепест-	0,26	3
6, 15	130	30	25	20	25	CISOAI	ковая	0,24	4
7, 16	170	35	10	25	20	Железо	Тарель-	0,38	2
8, 17	100	40	16	15	15	железо	чатая	0,42	3
9, 18	180	45	25	20	10	Бронза	Сфера	0,35	4

Контрольные вопросы


- 1. Сущность процесса фильтрации.
- 2. Классификация фильтров по типу перегородки.
- 3. Параметры, характеризующие процесс фильтрации.
- 4. Что означает максимальное время работы фильтра?

Лабораторная работа №3 Тема: «Расчет электрофильтра» Цель работы

Приобретение знаний и навыков по расчету электрофильтров.

Вводная часть

Электрическая фильтрация основана на зарядке взвешенных частиц и осаждение заряженных частиц на осадительных электродах под действием электрических сил. Газ, содержащий взвешенные частицы, проходит через систему, состоящую из заземленных осадительных электродов и размещенных на некотором расстоянии коронирующих электродов, к которым подводится выпрямленный электрический ток высокого напряжения (рис. 3.1).

Коронирование

Ток
насыщения

Пробой

Рис. 3.1. Схема трубчатого электрофильтра

Рис. 3.2. Вольтамперная характеристика электрофильтра

При достаточно большом напряжении, приложенном к электродам, у поверхности коронирующего электрода возникает интенсивная ударная ионизация газа, сопровождающаяся возникновением коронного разряда (короны). Коронный разряд — это явление ударной ионизации газа под действием движущихся электронов или ионов вблизи коронирующего электрода [1, 3, 4,].Сила тока зависит от числа ионов и напряжения между электродами. На рис. 3.2 показана ВАХ (вольтамперная характеристика) электро-

фильтра. Сила тока растет с повышением напряжения до тех пор, пока все ионы не вовлекутся в движение. После этого наступает насыщение, т.е. все ионы вовлечены в движение, и повышение напряжения не влияет на силу тока. При некотором критическом напряжении $(U_{\kappa p})$ ионы и электроны настолько ускоряются, что, сталкиваясь с молекулами газа, ионизируют их, превращая в положительные ионы и электроны. Образовавшиеся ионы и электроны ускоряются электрическим полем и участвуют в ионизации молекул. Этот процесс называется ударной ионизацией газа. После этого происходит пробой газа. Взвешенные частицы, поступающие в зону между электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд. Заряженные частицы под действием электрического поля движутся в сторону электрода с зарядом противоположного знака и оседают на коронирующей 1 и осадительной 2 электродах (рис.3.1). Электрофильтр питается от источника высокого напряжения 3 (20-90кВ). Время зарядки частиц измеряется долями секунды. Скорость движения частиц зависит от напряженности электрического поля и диаметра частиц (табл. 4.1).

Электрофильтры бывают трубчатые и пластинчатые, которые могут быть горизонтальные и вертикальные, сухие и мокрые. В трубчатых электрофильтрах в качестве осадительных электродов используют трубы диаметром 0,25-0,30 м и длиной 3-5 м.

В пластинчатых электрофильтрах в качестве осадительных электродов используют пластинки плоских, «с» - образных и других форм. В качестве коронирующих электродов используют конструкции с не фиксированными и фиксированными точками разряда.

Таблица 3.1 Скорость движения частиц к осадительному электроду, v_2 , м/с

Диаметр ч	Диаметр частиц, мкм		1	2	10	30
Е, кВ/м	150	0,012	0,013	0,015	0,075	0,1
L, KD/M	300	0,025	0,03	0,06	0,5	0,6

Важную роль в процессе осаждения пыли на электродах играет электрическое сопротивление слоя пыли. Пыли с удельным сопротивлением от 10^6 до 10^{12} хорошо осаждаются и легко удаляются встряхиванием. Пыли меньшего сопротивления быстро отдают заряд и возвращаются в поток. Пыли большего сопротивления разряжаются медленно и препятствуют осаждению новых частиц.

Для обеспечения равномерности поступления газа на входе электрофильтра устанавливается распределительная решетка. Удаление слоя пыли осуществляется встряхивающим устройством. При этом пыль ссыпается в бункер, расположенный под электродами. Интервал между встряхивающими импульсами обычно составляет около 3 мин. Эффективность очистки запыленного газа с помощью электрофильтра определяют по формуле Дейча:

$$\eta=1-e^{-v_{\mathfrak{I}}F_{\mathsf{YJI}}},$$

где $F_{yo} = F/Q$ — удельная поверхность осадительных электродов, с/м; F — площадь осадительных электродов, м²; Q — расход газа, м³/с.

Электрофильтры характеризуются следующими параметрами:

- 1) активная зона рабочая часть аппарата, образованная межэлектродными промежутками;
- 2) активное сечение свободное сечение активной зоны для прохода газа;
- 3) активная высота поля расстояние между коронирующими и осадительными электродами;
- 4) активная длина поля протяженность поля в направлении хода газа;
- 5) площадь осаждения суммарная поверхность осадительных электродов;
- 6) активная длина коронирующих электродов суммарная длина всех коронирующих электродов.

Для расчета электрофильтра необходимы следующие исходные данные:

- объемный расход газа Q и другие параметры очищаемых газов;
- концентрация и некоторые другие свойства пыли;
- требуемая степень очистки газа.

Методика расчета

- 1. Выбирают конструктивный тип электрофильтра с учетом исходных условий (по варианту).
- 2. Рассчитывают требуемую площадь активного сечения электрофильтра:

$$S = Q/w_{\varepsilon}, \, \mathbf{M}^2, \tag{3.1}$$

где Q - объемный расход очищаемых газов, м³/c; w_z – скорость газа, м/c.

3. Определяют напряженность электрического поля:

$$E=U/H, B/M, \tag{3.2}$$

где U — рабочее напряжение электрофильтра, B; H — расстояние между элек-тродами, м. Для трубчатых электрофильтров H=R, где R — радиус трубы.

4. Определяют скорость осаждения (дрейфа) частиц:

$$w_0 = \frac{\varepsilon_0 \cdot \varepsilon \cdot d \cdot E^2}{(\varepsilon + 2) \cdot \mu}, \, \text{M/c}, \tag{3.3}$$

где ϵ_0 =8,85·10⁻¹² Φ /м; ϵ - относительная диэлектрическая проницаемость вещества частиц; μ - динамическая вязкость газа, Π а·с.

5. Рассчитывают требуемую активную длину электрофильтра:

$$L = \frac{\vec{R} \cdot w_{\Gamma}}{2 \cdot w_{0}} \cdot ln \frac{1}{1}$$
, м (трубчатый электрофильтр), (3.4)

$$L = \frac{H \cdot w_{\text{г}}}{2 \cdot w_{0}} \cdot ln \frac{1}{1 -}$$
, м (пластинчатый электрофильтр), (3.5)

где η - требуемая эффективность очистки.

6. Ожидаемая эффективность очистки:

$$\eta = I - exp \left[-\frac{2 \cdot w_0 \cdot L}{R \cdot w_\Gamma} \right]$$
 (трубчатый электрофильтр), (3.6)

$$\eta = I - exp \left[-\frac{w_0 \cdot L}{H \cdot w_\Gamma} \right]$$
 (пластинчатый электрофильтр), (3.7)

Таблица 3.2.

Исходные данные (варианты)

				700	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
№ вар.	Тип электро- фильтра	H, R MM	<i>U</i> , кВ	<u>Q</u> , м /с	<i>w</i> _г , м/с	μ, 10 Па·с	<i>d</i> , мкм	ε	η
1, 10	УГ (П)	137,5	35	150	0,7	22,2	30	4	0,98
2, 11	ЭГА (П)	150	40	200	1,5	20,1	10	7,5	0,95
3, 12	ЭГТ (П)	130	30	40	0,9	18,8	2	5	0,90
4, 13	УВ (П)	137,5	35	60	1,2	17,5	1	15	0,88
5, 14	СПМ-8	130	30	7	0,8	19,0	0,4	18	0,85
6, 15	ГМЦ-20-2 (П)	137,5	35	25	1,2	23,0	2	2,2	0,90
7, 16	ДМ-316 (Тр)	115	25	20	1,5	20,0	30	4	0,98
8, 17	ШМК-4,5 (Тр)	110	25	5	1,0	17,0	2	5	0,95
9, 18	KT-9 (Tp)	120	25	8	1,1	18,0	1	15	0,95

Примечание: А – модифицированный; В – вертикальный; Г – горизонтальный; Д – доменный; К – кислотный; М – мокрый; П – пластинчатый; С – сажевый; Т – высокотемпературный; Тр – трубчатый; У – унифицированный; Ц – цилиндрический корпус; Ш – шестигранные электроды; Э – электрофильтр.

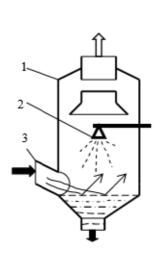
Контрольные вопросы

- 1. Принцип работы электрофильтра.
- 2. Вольтамперная характеристика электрофильтра.
- 3. Классификация электрофильтров.
- 4. Параметры электрофильтров

.

Лабораторная работа №4

Тема: «Аппараты мокрой очистки запыленных газов. Расчет скруббера и форсунки»


Цель работы

Применение приобретенных знаний и навыков при расчете аппаратов мокрой очистки выбросов.

Вводная часть

Мокрые газоочистные аппараты применяют для предварительной очистки и подготовки (кондиционирования) газов, поступающих в газоочистные аппараты других типов, например, в рукавные фильтры, электрофильтры. Мокрые пылеуловители широко применяются для очистки воздуха от пыли с размером частиц d_q =0,3-2 мкм, а также при высоких температурах очищаемого газа. В качестве орошаемой жидкости (абсорбента) чаше всего применяется вода.

Мокрая очистка эффективнее сухой очистки. Контакт пыли или газа с каплями жидкости увеличивает эффективность очистки. Принцип действия мокрых пылеуловителей заключается в осаждении частицы пыли на поверхность капель и пленки жидкости за счет сил инерции и броуновского движения. При мокрой очистке важную роль играет смачиваемость частиц жидкостью: чем лучше смачиваемость – тем эффективнее очистка. С учетом конструктивных особенностей мокрые газоочистные аппараты делят на следующие типы: скрубберы Вентуры; форсуночные и центробежные скрубберы; ударно-инерционные аппараты; барботажно-пенные аппараты и др. [1, 2, 3, 4,]

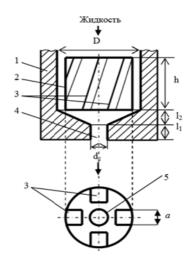


Рис. 4.1. Полый форсуночный скруббер.

Рис. 4.2. Центробежно-струйная форсунка: 1 – корпус; 2 – вкладыш; 3 – каналы завихряющие; 4 – сопло; 5 – центральный канал

Форсуночный скруббер (рис.4.1) состоит из полой емкости 1, в которую встроен форсунок 2. Очищаемый газ поступает через патрубок 3 и направляется на поверхность воды, где осаждаются крупные частицы. Далее поток поднимается вверх на встречу потока капель жидкости, распыляемый через фарсунок. Частицы адсорбируются на поверхности капель и падают вниз. Шлам выводится через нижнюю часть аппарата. Очищенный газ выводится через верхнюю часть аппарата. Количество форсунок может быть несколько. Удельный расход воды составляет q=3-6 л/м³, гидравлическое сопротивление — до ΔP =250 Па, при скорости потока v=0,7-1,5 м/с. Сечение аппарата можно определить по формуле S=Q/v, где Q — объемный расход очищаемого газа, м³/с; v - скорость пропускания потока, м/с.

Форсунки используются для распыления жидкости и распределения газа в различных аппаратах защиты окружающей среды (аппараты мокрой очистки газов, абсорберы, адсорберы и др.). Форсунки можно разделить на три класса: центробежные, центробежноструйные, ударноструйные. В каждом классе десятки различных конструкций. В данной работе рассматривается центробежноструйная форсунка с завихряющими вставками (рис. 4.2).

Для расчета скруббера и форсунки необходимы следующие исходные данные: расход очищаемого газа Q_{2a3} (м³/с); скорость потока (м/с); требуемая производительность форсунки Q (м³/с); перепад давления $\Delta P_{\mathcal{M}}$ (Па); корневой уголь факела β (град.); свойства жидкости: плотность $\rho_{\mathcal{K}}$ (кг/м³), вязкость $\mu_{\mathcal{K}}$ (Па·с) и поверхностное натяжение σ ; плотность ρ_{Γ} и вязкость μ_{Γ} окружающего газа; коэффициент расхода γ .

Методика расчета

Упражнение 1. Расчет скруббера

1. Определяют сечение скруббера:

$$S = \frac{Q_{\text{ras}}}{v}.\tag{4.1}$$

2. Определяют диаметр скруббера:

$$D_{c\kappa} = \sqrt{\frac{4 \cdot S}{\pi}} \tag{4.2}$$

3. Определяют высоту скруббера:

$$H_{c\kappa p} = (3 \div 4)D_{c\kappa p} \tag{4.3}$$

Упражнение 2. Расчет центробежно-струйной форсунки

1. Определяют диаметр сопла форсунки:

$$d_c = \sqrt{\frac{4 \cdot Q}{\pi \gamma \sqrt{2 \cdot \Delta P_{\mathcal{H}} / \rho_{\mathcal{H}}}}}, \text{ M.}$$
 (4.4)

Для воды ρ_{∞} =1000 кг/м³. Далее значения d_c переводят в мм.

2. Определяют диаметр вкладыша и равный ему внутренний диаметр корпуса форсунки:

$$D = 1,925 \cdot d_c, \text{ MM}.$$
 (4.5)

При $d_c \le 14$ мм значения D принимают 27 мм.

3. Определяют высоту вкладыша:

$$h = 2.5 + 2 \cdot d_c$$
, MM (4.6)

4. Определяют длину соплового канала:

$$l_1 = (0.5 \div 1.0) \cdot d_c, \text{ MM}$$
 (4.7)

5. Определяют высоту камеры смещения:

$$l_2 = \frac{D - d_c}{2 \cdot t g \frac{\theta}{2}}, \text{MM}, \tag{4.8}$$

где угол конусности камеры θ =110÷130°.

6. Определяют диаметр центрального канала:

$$d_0 = d_c \sqrt{0.676 - 0.024 \cdot d_c}, \text{ MM}. \tag{4.9}$$

7. Определяют суммарную площадь закручивающих каналов:

$$S_{\kappa} = 1,075 \cdot \pi \cdot d_0^2, \text{ MM}^2$$
 (4.10)

8. Определяют угол наклона закручивающих каналов:

$$lg\alpha = 0.053 \cdot \beta \cdot \left(\frac{d_0^2}{d_c^2}\right)^{0.58} + 0.32$$
, (4.11)

где β в [рад] (1 рад=57,3 град). Далее находят α =10^x, [рад], и переводят в [град], где x=1g α .

9. Определяют размер закручивающих каналов:

$$a = \sqrt{\frac{S_{\kappa}}{n \cdot \cos \alpha}}, \text{ MM}, \tag{4.12}$$

где число каналов n=4÷6 (если α >90°, то заменит $cos\alpha$ на $cos(\alpha$ -90)). 10. По необходимости определяют средний объемно-поверхностный диаметр капель жидкости:

$$d_{\mathcal{H}} = 0,154 \cdot \Delta P_{\mathcal{H}}^{0,44} \cdot d_c^{0,23}, \text{ MM},$$
 (4.13)

где $\Delta P_{\mathcal{H}}$ в [МПа], d_c в [мм].

Таблица 4.1. Исхолные ланные (варианты)

		псходив	е данные (ва	tpiiaii i bij		
№ вар.	Qгаз, м³/ч	$Q, M^3/4$	υ, м/c	ΔРж, МПа	γ	β
1, 10	3000	30	0,5	0,5	0,85	60
2, 11	2500	25	0,4	0,4	0,80	65
3, 12	2000	20	0,3	0,3	0,78	70
4, 13	1500	15	0,2	0,2	0,73	75
5, 14	1000	10	0,15	0,15	0,70	80
6, 15	500	5	0,15	0,15	0,65	60
7, 16	2200	22	0,45	0,45	0,67	70
8, 17	1800	18	0,22	0,22	0,75	80
9, 18	1200	12	0,25	0,25	0,79	65

Контрольные вопросы

- 1. Сущность метода мокрой очистки газов.
- 2. Классификация аппаратов мокрой очистки.
- 3. Принцип работы и классификация форсунок, область применения.
 - 4. Параметры форсунок.

Библиографический список

- 1. Процессы и аппараты химической технологии / Под ред. А.М. Кутепова. Т.1 и 2. М.: Логос, 2002. - 600 с.
- 2. Общий курс процессов и аппаратов химической технологии / Под ред. В.Г. Айнштейна. Кн. 1 и 2. М.: Логос, ВШ, 2003. 1760 с.
- 3. Инженерная экология / Под. ред. В.Т. Медведева. М.: Гардарики, 2002. -688 с.
- 4. Инженерная экология и экологический менеджмент /Под. ред. Н.И. Иванова и И.М. Фадина. М.: Логос, 2003. 528 с.
- 5. *Баранов Д.А., Кутепов А.М.* Процессы и аппараты. М.: «Академия», 2004. 304 с.
- 6. *Белов С.В.* Охрана окружающей среды. М.: ВШ, 1991. 319 с.
- 7. Тагоев С.А., Мингазетдинов И.Х. и др. Процессы и аппараты защиты окружающей среды / Практикум / Под ред. Глебова А.Н., Казань: Изд. «Эко-центр». 2005. 94с.
- 8. Яковлев С.В. Очистка производственных сточных вод. М.: Стройиздат. 1979. 320с.
- 9. *Белов С.В.* Средства защиты в машиностроении. М.: Машиностроение. 1989. 368c.
- $10.\ Tимонин\ A.C.\ Инженерно-экологический справочник.\ T.1-4.\ -$ Калуга: Изд-во Н. Бочкаревой, 2003.
- 11. Белоусова О.А., Струкова Л.В., Горшкова А.Н. Промышленная экология. Изд-во ГОУ ВПО УГТУ-УПИ 2006.
- 12. *Родионов, А.И.* Техника защиты окружающей среды / А.И. Родионов, В.Н. Клушин, Н.С. Торочешников. М.: Химия, 1989. 512 с.
- 13. *Сорокин Ю.П.* Природопользование. Практикум. Санкт-Петербургский технический университет. СПб, 2007. 91с.

Содержание

Введение	3
Лабораторная работа №1. Аппараты сухой механической очи-	4
стки запыленных газов (выбросов). Расчет циклонов	
Лабораторная работа № 2. Расчет пористых металлических	12
фильтров для очистки выбросов от пыли	
Лабораторная работа №3. Расчет электрофильтра	18
Лабораторная работа №4. Аппараты мокрой очистки запылен-	23
ных газов. Расчет скруббера и форсунки	
Библиографический список	28

ПРИРОДООХРАННЫЕ ТЕХНОЛОГИИ В ТЕПЛОЭНЕРГЕТИКЕ

Методические указания к лабораторным работам для студентов магистратуры направления 13.04.01

Сост.: В.М. Пискунов

Печатается с оригинал-макета, подготовленного кафедрой теплотехники и теплоэнергетики

> Ответственный за выпуск *В.М. Пискунов* Лицензия ИД № 06517 от 09.01.2002

Подписано к печати 21.04.2021. Формат 60×84/16. Усл. печ. л. 1,7. Усл.кр.-отт. 1,7. Уч.-изд.л. 1,5. Тираж 75 экз. Заказ 339.

Санкт-Петербургский горный университет РИЦ Санкт-Петербургского горного университета Адрес университета и РИЦ: 199106 Санкт-Петербург, 21-я линия, 2