Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет»

На правах рукописи

Сергеева Людмила Юрьевна

c AP

СОСТАВ И ИЗОТОПНО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ЦИРКОНА ИЗ ГРАНУЛИТОВ ДАЛДЫНСКОЙ СЕРИИ АНАБАРСКОГО ЩИТА

Специальность 25.00.09 – Геохимия, геохимические методы поисков полезных ископаемых

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

> Научный руководитель: доктор геолого-минералогических наук, доцент Скублов С.Г.

Санкт-Петербург – 2021

оглавление

ВВЕДЕНИЕ	4
ГЛАВА 1 ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ РАЙОНА	9
1.1 Представления о геологическом строении Анабарского щита	9
1.2 История изучения далдынской серии	13
1.2.1 Характеристика далдынской серии	16
1.3 Выводы по главе 1	21
ГЛАВА 2 МЕТОДЫ ИССЛЕДОВАНИЯ	22
2.1 Методики исследования геохимических особенностей пород	22
2.2 Методики исследования геохимических особенностей минералов	22
2.3 Методики изотопно-геохимических исследований пород и минералов	23
2.4 Выводы по главе 2	27
ГЛАВА 3 ГЕОЛОГО-ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ОСОБЕННОСТИ СОСТАВА ПОРОД И МИНЕРАЛОВ ГРАНУЛИТОВ	И 28
3.1 Геолого-петрографическая характеристика	28
3.2 Особенности состава пород и минералов гранулитов	33
3.2.1 Особенности состава ортопород	33
3.2.2 Особенности состава пород метаосадочной ассоциации	41
3.4 Р-Т параметры гранулитового метаморфизма	59
3.5 Выводы по главе 3	64
ГЛАВА 4 ИЗОТОПНО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА	65
4.1 U-Pb изотопная система	65
4.1.1 Мезократовые кристаллосланцы	65
4.1.2 Плагиогнейсы	71
4.1.3 Мафитовые породы	73
4.1.4 Кварциты	75
4.2 Lu-Hf изотопная система	81
4.3 Изотопный состав кислорода в цирконе	84
4.3.1 Изотопный состав кислорода в цирконе из кварцитов	85
4.4 Редкоэлементный состав циркона	88
4.5 Sm-Nd изотопная система	. 103
4.5.1 Изотопный Sm-Nd состав пород далдынской серии	. 103
4.5.2 Изотопный Sm-Nd состав минералов	. 103

4.6	Общие	законо	мерности	состава	циркона	ПО	редким	И	редкоземельн	ыМ
элем	иентам					•••••				106
4.7 I	Выводы і	по главе	e 4					•••••		121
ЗАК	ЛЮЧЕН	ИЕ				•••••		•••••	••••••	122
СПІ	ІСОК ЛІ	ATEPAT	ГУРЫ			•••••		•••••		124
ПРИ крис	ИЛОЖЕН сталлохи	ИЕ мическі	А Пре ие коэффи	едставите. щиенты м	льные инералов	мик] ИЗ П	розондов ород дал	ые дын	анализы иской серии 1	и 144
ПРИ	ИЛОЖЕН	НИЕ Б Р	езультаты	U-Pb (SF	HRIMP-II)	анал	изов цир	окон	ıa	153
ΠΡΙ	ИЛОЖЕН	НИЕ В С	Содержани	е редких	и редкозе	мель	ьных элем	иент	гов	162

ВВЕДЕНИЕ

Актуальность темы исследования

Древнейшие комплексы пород, метаморфизованные условиях В гранулитовой фации, широко распространены на щитах и в кристаллическом основании платформ. Они давно привлекают внимание исследователей, поскольку дают важную информацию о составе и степени преобразования континентальной коры, сформированной на ранних этапах развития Земли (Glikson, 2014). Исследователи считают, что эти комплексы слагают фундамент зеленокаменных поясов и так же, как и «серые гнейсы», относятся к древнейшим образованиям на Земле (Van Kranendonk et al., 2018). Оценка условий формирования континентальной коры является одной из фундаментальных проблем геологии раннего докембрия (Spencer et al., 2017).

Анабарского В пределах щита большое распространение имеют гиперстеновые плагиогнейсы (эндербиты) и связанные с ними метабазиты (кристаллосланцы), правило, как совместно с кварцитами образующие занимающий 2/3«слоистый» комплекс, около поверхности щита И метаморфизованный в условиях гранулитовой фации.

Комплексное геохимическое и изотопно-геохимическое изучение циркона из пород, слагающих фундамент древних щитов, позволяет решить вопросы реконструкции процессов происхождения и эволюции ранней континентальной коры (Hawkesworth et al., 2017; Trail, 2018).

Степень разработанности темы исследования

Гранулиты Анабарского щита систематически исследуются со второй половины прошлого века (Смирнов, Климов, 1949; Рабкин, 1959; Лутц, 1964; Розен и др., 1986; Ножкин и др., 2019; цикл работ Н.И. Гусева с соавторами, начиная с 2012 г. и по настоящее время). Однако многие вопросы, касающиеся возраста и условий образования протолита гранулитов, времени и параметров процессов метаморфизма остаются недостаточно изученными.

Использование локальных методов (SIMS, LA-ICP-MS), получивших широкое развитие в последние десятилетия, позволяет установить условия

образования и возраст процессов, выявить новые закономерности и особенности поведения редких и редкоземельных (REE) элементов в процессах гранулитового метаморфизма, а также пополнить банк данных по редкоэлементному составу метаморфического циркона.

Цель работы: реконструкция возраста и этапов метаморфизма для гранулитов далдынской серии Анабарского щита на основе комплексного изотопно-геохимического и минералого-геохимического изучения циркона, а также вмещающих пород и породообразующих минералов.

Задачи работы:

1. Установление особенностей химического состава (по главным, редким и редкоземельным элементам) пород и породообразующих минералов.

2. Локальное датирование циркона из главных разновидностей пород далдынской серии U-Pb методом, сопровождаемое изучением изотопного состава гафния и кислорода, а также исследование распределения редких и редкоземельных элементов в цирконе. Определение возраста пород области сноса для кварцитов.

3. Датирование гранатсодержащих парагенезисов из гранулитов Sm-Nd методом с контролем распределения редкоземельных элементов в минералах.

4. Определение Р-Т параметров и выделение этапов метаморфизма для гранулитов далдынской серии.

5. Сравнительный анализ данных по редкоэлементному составу циркона из гранулитов далдынской серии и сопоставление с данными для гранулитового циркона из других регионов мира.

Научная новизна работы.

Проведенное изотопно-геохимическое исследование циркона из кварцитов далдынской серии вносит существенный вклад в решение проблем эволюции ранней континентальной коры Анабарского щита. Установленный для циркона возраст 3.5 млрд лет отражает преобладание в области сноса палеоархейских магматических пород. Изотопный состав кислорода в цирконе из кварцитов

5

указывает на существенную контаминацию материнских расплавов супракрустальным веществом.

Для основных гранулитов далдынской серии установлены возраст и Р-Т параметры метаморфизма амфиболитовой фации, наложенного на палеопротерозойский гранулитовый метаморфизм.

Впервые выполнено обобщение и сравнение полученных данных по редкоэлементному составу циркона из гранулитов Анабарского щита и гранулитовых комплексов мира.

Теоретическая и практическая значимость работы.

Проведенное исследование вносит вклад в развитие нового научного направления – петрохронологии, связывающего данные геохронологии с условиями протекания магматических и метаморфических процессов, а также способствует решению проблем эволюции ранней континентальной коры Анабарского щита.

Полученные результаты комплексного изотопно-геохимического исследования высокометаморфизованных пород Анабарского щита могут быть использованы при составлении Государственных геологических карт, а также в учебных курсах по «Общей геохимии» и «Изотопной геохимии».

Методология и методы исследования. Методологической основой исследования является научный подход с комплексированием современных изотопно-геохимических и минералого-геохимических методов. В диссертации были использованы образцы пород, собранные коллективом Отдела РГ и ПИ Восточной Сибири («ВСЕГЕИ») в ходе проведения геолого-съемочных работ 1:1 000 000 масштаба на территории листа R-49 – Оленек в 2011–2014 гг. Опорная коллекция состоит из 17 образцов. Химический состав петрогенных (главных) элементов в породах определен методом XRF на спектрометре ARL-9800 по стандартной методике. Содержание редких и редкоземельных элементов в породе проанализированы методом ICP-MS на квадрупольном масс-спектрометре ELAN-DRC-6100 по стандартной методике (ВСЕГЕИ). Состав минералов исследован на JEOL-JSM-6510 LA сканирующем электронном микроскопе С

6

энергодисперсионным спектрометром JED-2200 (JEOL) в ИГГД РАН. Анализ минералов (циркона, граната, пироксенов и амфиболов) на содержание редких и редкоземельных элементов (459 анализов) выполнен методом SIMS на ионном микрозонде Cameca IMS-4f (Ярославский филиал ФТИАН РАН). Локальное датирование циркона U-Pb методом выполнено на ионном микрозонде SHRIMP-II в Центре изотопных исследований (ЦИИ ВСЕГЕИ, 170 точек) и Cameca IMS-1280-HR в Институте геологии и геофизики Китайской Академии наук (IGG CAS, 60 точек). Изотопный состав Hf в цирконе (22 точки) измерен методом LA-ICP-MS в ЦИИ ВСЕГЕИ. Датирование пород и минералов Sm-Nd методом (3 образца) выполнено методом ТIMS в ИГГД РАН. Изотопный состав кислорода в цирконе (60 точек) определен на ионном микрозонде Cameca IMS-1280 (IGG CAS).

На защиту выносятся следующие положения:

1. Детритовый циркон из кварцитов далдынской серии с возрастом 3.5 млрд лет отражает преобладание в области сноса палеоархейских магматических пород. Изотопный состав кислорода в цирконе из кварцитов (δ¹⁸O от 5.4 до 9.8‰) указывает на контаминацию материнских расплавов супракрустальным веществом.

2. В основных гранулитах далдынской серии проявлен метаморфизм амфиболитовой фации (700°С и 6 кбар) с возрастом 1920 млн лет, наложенный на палеопротерозойский гранулитовый метаморфизм (775°С и 7.5 кбар).

3. Циркон из гранулитов далдынской серии, по сравнению с цирконом из гранулитов других регионов мира, имеет геохимические признаки (инверсию Euаномалии и редуцирование Се-аномалии, выполаживание спектра в области LREE, обогащение Ca, Ti, Sr), отражающие воздействие флюида, обогащенного несовместимыми элементами.

Степень достоверности результатов исследования обусловлена представительностью каменного материала и использованием аналитических данных, полученных в аккредитованных лабораториях.

Апробация результатов. Основные положения и результаты работы докладывались на следующих конференциях: IV Международная конференция

памяти А.П. Карпинского (Санкт-Петербург, 2015), XIV конференция СНО «Современные исследования в геологии» (Санкт-Петербург, 2015), X и XI Всероссийская молодежная конференция «Минералы: строение, свойства, методы исследования» (Екатеринбург, 2019, 2020), XII Международная конференция студентов, аспирантов и молодых ученых «Геология в развивающемся мире» (Пермь, 2020), Геологический международный студенческий саммит (Санкт-Петербург, 2021), XXIX Всероссийская молодежная конференция «Строение литосферы и геодинамика» (Иркутск, 2021).

Публикации. Результаты диссертационной работы в достаточной степени освещены в 15 печатных работах, в том числе в 9 статьях – в изданиях из перечня рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук (далее – Перечень ВАК), в 1 статье – в издании, входящем в международные базы данных и системы цитирования Scopus, Web of Science.

Структура и объем работы. Диссертация состоит из введения, 4 глав, заключения и списка литературы. Содержит 183 страницы, 70 рисунков, 4 таблицы в тексте и 29 таблиц, представленных в 3 приложениях. Список литературы включает 170 источников.

Благодарности. Автор выражает искреннюю признательность своему научному руководителю профессору Скублову С.Г. за помощь в процессе работы. Автор благодарит Гусева Н.И. (ВСЕГЕИ) за всестороннюю поддержку и предоставленный фактический материал.

За проведение аналитических работ и обсуждение результатов автор признателен К.И. Лохову (СПбГУ), А.В. Березину, О.Л. Галанкиной, А.Е. Мельнику и Е.С. Богомолову (ИГГД РАН), С.Г. Симакину и Е.В. Потапову (ЯФ ФТИАН РАН), Ч. - Л. Ли, С.- Х. Ли и Г. Тангу (IGG CAS). Исследование выполнено при поддержке РФФИ в рамках научных проектов № 17-35-50002 и 18-35-00229.

ГЛАВА 1 ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ РАЙОНА

1.1 Представления о геологическом строении Анабарского щита

Одной из важнейших докембрийских структур Северной Евразии является Сибирский кратон площадью 4×10⁹ км² (рисунок 1.1).

Рисунок 1.1 – Схема геологического строения Сибирского кратона (по (Rozen et al., 1994; Gladkochub et al., 2006; Shatsky et al., 2018) с изменениями).
Палеопротерозойские внутриконтинентальные рифтовые зоны: ub – Билякчано-Улканская; ui – Урикско-Ийская. Мезо- и неопротерозойские пассивные окраины: um – Учуро-Майская; bp – Байкало-Патомская; ps – Приясаянская; yn – Енисейская. Кимберлитовые поля: 1 – поле Куойка; 2 – поле Муна (трубки Новинка и Заполярная); 3 – Далдынское поле (трубки Удачная, Ленинградская и Зарница); 4 – Алакитское поля (трубка Комсомольская); 5 – Накынское поле (трубки Нюрбинская, Ботуобинская); 6 – Харамайское поле. Палеопротерозойские выступы фундамента: В – Бирюсинское поднятие; Вк – Байкальское поднятие; К – Ангаро-Канское поднятие; S – Шарыжалгайское поднятие; Y – Енисейское поднятие

С севера кратон ограничен Таймырским складчатым поясом и Верхоянским на востоке, южная граница проводится по мезозойскому Монголу-Охотскому складчатому поясу и на западе по Центрально-Азиатскому складчатому поясу (Розен, 2003; Глебовицкий и др., 2008а). Большая часть кратона (~70% рифейскотерритории) перекрыта отложениями платформенного чехла Их 8 фанерозойского возраста. мощность достигать до может KM. Раннедокембрийский фундамент кратона выходит на дневную поверхность в нескольких выступах. Наиболее древние выступы установлены в пределах Анабарского и Алданского щитов, а также Шарыжалгайского выступа (Rosen, Turkina, 2007).

Анабарский щит занимает площадь около 62 886 км² и представляет собой северный выступ архейского фундамента Сибирской платформы (рисунок 1.2) (Архей..., 1988). С самого начала систематических исследований породы щита относили к наиболее древним и глубокоизмененным комплексам фундамента Сибирской платформ. По представлениям Б.Г. Лутца (1964) и М.И. Рабкина (1959), щит считался гетерогенным как по возрасту, так и по степени метаморфизма. Исследователями установлено, что однородные комплексы метаморфических пород (серий) слагают широкие полосы, протягивающиеся в северо-западном направлении. В пределах щита разнородные по метаморфизму блоки пород разделены зонами смятия.

Рисунок 1.2 – Тектонические схемы: а – северной части фундамента Сибирского кратона по (Rosen et al., 1994; Griffin et al., 1999); б – Анабарского щита.

 2 - архейские гранулитовые глыбы, формации: 1 – метабазит-плагиогнейсовая (далдынская серия), 2 – плагиогнейсовая (верхнеанабарская серия); 3, 4 – палеопротерозойский гранулитовый Хапчанский пояс, формации: 3 – метавулканогенная; 4 - метакарбонатно-парагнейсовая (хапчанская серия); 5 – зоны смятия (тектонит-гранит-мигматитовая формация); 6, 7 - интрузивные образования, формации: 6А- анортозитовая, 6G – габбро-диоритовая; 7 – гранитовая; 8 – главные разломы: а – крутопадающие, б – надвиги; 9 – платформенный чехол; 10 – Попигайская астроблема. Гранулитовые глыбы (римские цифры в кружках): I - Западная, II - Верхнекуонамская, III- Ильинская, IV – Далдынская, V- Джелиндинская, VI - Хапчанская, VII – Попигайская. Зоны смятия (цифры в квадратиках): 1 - Чурбукулахская, 2 – Ламуйкская, 3 – Котуйкан-Монхолинская, 4 – Ченгелехская; 5 – Харапская, 6 – Билляхская, 7 – Салтахская В тектоническом отношении он представляет собой блоково-складчатое сооружение, где проявилось несколько фаз складчатости, сопровождавшихся образованием разновозрастных крупных тектонических зон дробления и многочисленных разрывных нарушений различных направлений (Геологическая..., 1984).

B строении Анабарского щита принимают участие архейские И раннепротерозойские метаморфические породы гранулитовой фации, меньше амфиболитовой распространены породы фации. Среди образований преимущественно встречаются гиперстеновые плагиогнейсы (эндербиты) и метабазиты, занимающие две трети обнаженной поверхности, а также гранатовые гнейсы и карбонатные породы, метаморфизованные в условиях гранулитовой фации (Архей..., 1988). Широким развитием пользуются магматические докембрийские породы.

Метаморфический комплекс по периферии массива перекрывается переклинально залегающими рифей-вендскими осадочными отложениями, которые относятся к осадочному чехлу платформы (Лутц, 1964).

На основе литолого-петрографического и изотопно-геохронологического принципов и физических свойств пород ассоциации Анабарского щита подразделяются на метабазит-плагиогнейсовую (далдынскую), собственно, плагиогнейсовую (верхнеанабарскую), карбонатно-гнейсовую (хапчанскую) и приразломную тектонит-гранит-мигматитовую (ламуйкскую) формации архейского и протерозойского возраста. Далдынская, верхнеанабарская и хапчанская серии представляют собой сложноскладчатые слоистые комплексы. Для них характерны узкие линейные и изоклинальные складки северо-северозападного простирания.

В процессе геолого-съемочных работ масштаба 1:200 000, проведенных в 60-70-х годах, выделенные серии были расчленены на толщи: в составе далдынской серии выделены бекелехская и килегирская, в составе верхнеанабарской – амбардахская, эйиминская, а в составе хапчанской – вюрбюрская, хаптасыннахская и билээх-тамахская толщи (Гусев и др., 2016).

В строении Анабарского щита выделяют три разнородных по составу тектонических блока, которые разделяются между сосбой глубинными зонами разломов. Далдынский эндербито-гнейсовый террейн занимает центральную часть площади Анабарского щита, слагая полосу северо-западного простирания шириной 140–190 км. Террейн ограничен с запада Котуйканской, а с востока Билляхской зонами меланжа и рассечен почти посередине Главным Анабарским разломом сдвиговой кинематики, повсеместно выраженным специфичными псевдотахилитами, или милонитами и катаклазитами. На севере перекрыт образованиями ильинской свиты нижнего рифея, а на юге – старореченской свиты нижнего венда. Далдынский террейн преимущественно сложен древними гранулитами бекелехской и килегирской толщи далдынской серии. Широко развиты образования верхнеанабарской серии, представленные амбардахской и эйиминской толщами (Гусев и др., 2016).

1.2 История изучения далдынской серии

Далдынская серия систематически и всесторонне изучалась геологами в ходе проведения геолого-съемочных и тематических работ на территории Анабарского щита, начиная с 40-х годов прошлого века.

Первыми выделили далдынскую серию пород Л.П. Смирнов и Л.В. Климов в 1948 г. в результате геологической съемки масштаба 1:1 000 000 в междуречье р. Котуйкан и среднего течения р. Большая Куонамка (Смирнов, Климов, 1949). В состав серии они включили двупироксеновые и амфиболовые, чаще безкварцевые плагиогнейсы с подчиненным развитием амфиболитов, гранатовых и гранатмагнетитовых сланцев.

В период 1946–1949 гг. большой коллектив геологов НИИГА принимал участие в геологической съемке масштаба 1:1 000 000. Результаты этих работ были обобщены М.И. Рабкиным (1959), который разработал первую сводную стратиграфическую схему и рассмотрел вопросы петрологии и генезиса метаморфической толщи Анабарского щита. Впоследствии комплекс пород был расчленен на четыре серии: далдынскую, верхнеанабарскую, верхнеламуйскую и хапчанскую (Геологическая..., 1984). В основу расчленения был положен

13

литологический принцип. Далдынская серия представлена мезо- и меланократовыми двупироксеновыми плагиогнейсами и гнейсами с подчиненным количеством линз кварцитов и гранат-пироксен-магнетитовых кристаллических сланцев.

Вопросы петрологии метаморфизма гранулитов рассмотрел Б.Г. Лутц (1964), который предложил расчленить архейские породы Анабарского щита на три серии: далдынскую, анабаро-ламуйкскую и хапчанскую. Далдынскую серию он отнес к вулканогенной формации. В его работе впервые была дана характеристика регионального метаморфизма гранулитовой фации с описанием минеральных ассоциаций.

Геологи НИИГА в 1963 г. проводили геологосъемочные работы масштаба 1:200 000 в пределах листов R-49-XV, XVI. В результате метаморфический комплекс, распространенный на территории этих листов, был расчленен на три серии: далдынскую, верхнеанабарскую и хапчанскую. Далдынская серия впервые была расчленена на две толщи: бекелехскую и килегирскую. Килегирская толща отличается меньшим содержанием меланократовых плагиогнейсов и кристаллических сланцев и более частыми прослоями кварцитов и гранатовых плагиогнейсов.

В 1964 г. С.М. Табунов и П.Г. Рысин в ходе выполнения геологической съемки масштаба 1:200 000 на территории листов, расположенных к северу от района исследования, предложили расчленение архейской метаморфической толщи составу на комплексы пород, отвечающие ПО далдынской, верхнейанабарской и хапчанской сериям (Табунов, Рысин, 1965). В этом случае далдынская серия была разделена на две свиты – нижнюю, бекелехскую (выделена впервые) и верхнюю джелиндинскую. Отличительными особенностями нижней свиты является наличие магнетитовых кристаллических сланцев и широкое развитие бескварцевых двупироксеновых и амфибол-двупироксеновых плагиогнейсов.

В период с 1965 по 1967 г. геологическая съемка масштаба 1:200 000 была проведена на территории листов R-49-XXV, XXVI и R-49-XXVII, XXVIII. В

результате данных работ значительно пополнены представления о гелогическом строении южной части Анабарского щита, были проведены геологопетрографические исследования древнейших толщ (Геологическая..., 1984).

В 1968 г. М.И. Рабкиным, А.Н. Вишневским и Б.Г. Лопатиным (Рабкин и др., 1968) была завершена тематическая работа по проблеме метаморфизма и ультраметаморфизма пород Анабарского щита. В ней было обосновано выделение трех серий: далдынской, верхнеанабарской и хапчанской. В результате впервые произведено разделение пород щита гранулитовой и амфиболитовой фаций метаморфизма на более дробные подразделения (субфации).

Начиная с 1979 г. О.М. Розеном проводились исследования метабазитплагиогнейсовой ассоциации (Розен и др., 1979). Он также осуществлял научное руководство работами Анабарской экспедиции, которые были направлены на геолого-геохимическое и геохронологическое изучение щита. В составе экспедиции В.Л. Злобин исследовал метакарбонатно-гнейсовую ассоциацию метаморфических пород.

Изотопно-геохронологические исследования гранулитов Анабарского щита проводились Е.В. Бибиковой (Bibikova et al., 1986; Bibikova, Williams, 1990). В результате этих исследований по всей площади Анабарского щита были получены представительные геохимические данные и непротиворечивые изотопные оценки возраста.

Вопросами парагенетического анализа и возраста циркона в породах гранулитовой фации далдынской серии Анабарского щита занимались Л.М. Степанюк, А.Н. Пономаренко и др. (1993). Ими был установлен возраст кристаллизации циркона первой генерации в процессе эндербитизации двупироксенового мафитового гранулита – 3.3 млрд лет. Циркон с возрастом 2.2 млрд лет, по их данным, образовался в результате перекристаллизации циркона первой генерации.

Сравнительно недавно Н.И. Гусев, Г.В. Липенков, М.С. Мащак (Гусев и др. 2016) проводили геологосъемочные работы масштаба 1:1 000 000 на территории листов R-48 (Хатанга) и R-49 (Оленёк). В результате работ составлены комплекты

15

Государственной геологической карты третьего поколения масштаба 1:1 000 000. В результате проведенных исследований получены принципиально новые данные по геологическому строению, петролого-геохимическим и изотопногеохронологическим особенностям пород далдынской серии.

Ножкин А.Д. и др. (2019) в своей работе представили результаты детального изучения минерального и химического состава, геотермобарометрии и U-Pb датирования циркона из высокоглиноземистых сапфиринсодержащих кристаллосланцев килегирской толщи далдынской серии.

1.2.1 Характеристика далдынской серии

Далдынская серия приурочена к центральной части Анабарского щита и прослеживается сквозной полосой шириной до 70 км. К северо-западу и юговостоку от центра щита породы распадаются на отдельные группы по составу (Розен и др., 1986). В бассейне р. Далдын серия преимущественно сложена мезомеланократовыми двупироксеновыми, амфибол-двупироксеновыми плагиогнейсами, в бассейне р. Хатырык – чередованием последних с более лейкократовыми гиперстеновыми, двупироксеновыми и пироксен-амфиболовыми гнейсами и плагиогнейсами (рисунок 1.3). Среди данного комплекса пород также могут быть встречены небольшие по размерам линзы кварцитов и магнетитгранат-пироксеновые гнейсы (Лутц, 1964). По соотношению слагающих пород она расчленяется на две толщи: нижнюю – бекелехскую и верхнюю – килегирскую (Розен и др., 1986).

Бекелехская толща образует широкую (до 8 км) полосу северо-западного простирания в бассейне р. Хатырык (Геологическая..., 1984). Она слагает ядро Джелиндинского антиклинория, прослеживаясь полосой шириной 19–30 км в северо-западном направлении в бассейнах среднего течения рек Бол. Куонамка, Осур, Кенгеде и верхнего течения р. Будьурхай (Гусев и др., 2016). Западный контакт толщи тектонический и совпадает с зоной Анабарского разлома, восточный – нормальный стратиграфический (Геологическая..., 1984). Нижняя стратиграфическая граница толщи не установлена. Контакты гранулитов с вышележащей килегирской толщей обычно тектонические (левобережье р.

16

Хатырык, долина р. Кенгеде). В разрезе толщи преобладают существенно мезо- и меланократовые двупироксеновые и гиперстеновые плагиогнейсы, составляющие более 90% ее объема. В резко подчиненном количестве отмечаются основные кристаллические сланцы, а также магнетитовые сланцы и кварциты. Вскрытая мощность толщи равна 3500–4000 м. Бекелехская толща согласно перекрывается килегирской толщей (Геологическая..., 1984).

Килегирская толща слагает основную часть разреза далдынской серии, образуя северо-восточные и юго-западные крылья Далдыно-Джелиндинского антиклинория 1.3). Основной объем толши (рисунок составляют двупироксеновые гиперстеновые плагиогнейсы, гнейсы И И ИХ амфиболизированные и биотитизированные разности (8-85%); кварциты, гранатовые, биотит-гранатовые и гиперстен-гранатовые плагиогнейсы и гнейсы (10-15%),пироксен-плагиоклазовые И амфибол-пироксен-плагиоклазовые кристаллосланцы; линзы магнетит-двупироксен-кварцевых и магнетит-кварцевых кристаллосланцев; силлиманит-, кордиерит- и сапфиринсодержащие гнейсы и кальцифиры (до 10%). Толща является более пестрой по петрографическому составу, в ней широко распространены такие характерные породы, как кварциты, образующие мощные (до 60 м) пласты, прослеживающиеся на несколько десятков (до 40) километров. Характерна ритмичность разных порядков, которая выражается в повторяемости в разрезе пластов и горизонтов графит- и силлиманитсодержащих кварцитов, кальцифиров и мраморов, однотипном чередовании по разрезу различных по петрографическому и химическому составу пород: мезократовый гнейс, лейкократовый гнейс, кварцит и (или) силлиманит-, кордиеритсодержащие гнейсы (Государственная..., 1987).

Рисунок 1.3 – Карта геологического строения и фактического материала Далдынской площади

Составлена по материалам (Геологическая..., 1984) с изменениями и дополнениями): 1 – четвертичные образования; 2 – долериты; 3 – лейкограниты анабарского комплекса; 4 _ ультрамафиты далдынского перидотит-5 пироксенитового комплекса; _ гранулиты, гнейсы, кальцифиры верхнеанабарской серии; 6 – гранулиты килегирской толщи далдынской серии; 7 - участки интенсивной амфиболизации и биотитзации; 8 - гранатсодержащие гнейсы и гранулиты; 9 – пироксеновые и амфиболовые кристаллические сланцы; 10 – силлиманитовые гнейсы; 11 – салитовые гнейсы; 12 – гиперстеновые и двупироксеновые гнейсы и кристаллические сланцы; 13 – кварциты, 14 – кальцифиры; 15 – магнетитовые сланцы; 16 – элементы залегания гнейсовидности и полосчатости; 17 - места отбора и номера проб изотопного датирования циркона U-Pb методом (SHRIMP II). В знаменателе возраст в млн. лет.

Породы толщи преимущественно представлены для обозрения на северовосточном крыле Далдыно-Джелиндинского антиклинория, на водоразделе верховий р. Кюнгкюй-Рассоха - р. Налим-Рассоха и р. Дьелиндэ, где они имеют согласные взаимоотношения с подстилающей бекелехской и перекрывающей амбардахской толщами.

Рисунок 1.4 – Биотит-гиперстеновые кристаллосланцы (а) и гранитогнейсы, напротив устья р. Далдын. (Фото Н.И. Гусева)

На основании реставрации первичного состава пород (Государственная..., 1987) по методикам А.А. Предовского (1970) и De la Roche (1986), для субстрата килегирской толщи предполагается смешанный вулканогенно-кремнистотерригенный состав. Первоначально считалось, что толща была представлена андезитовыми и дацитовыми лавами (30–40%), хемогенными кварцитами, песчано-глинистыми и углеродистыми осадками (60–70%) (Государственная..., 1987).

На территории Анабарского щита довольно широко развиты разновозрастные интрузивные породы, представленные метасоматическими, гидротермальными и пегматоидными образованиями (Геологическая..., 1984). Магматические события широко проявились в архее и раннем протерозое, менее характерны они для раннего и позднего палеозоя (Гусев и др., 2016). В пределах Далдынской структуры ультраосновные породы развиты повсеместно, но чаще встречаются среди образований далдынской серии. Они залегают согласно с вмещающими метаморфическими породами в виде линзовидных тел (будин). Мощность ультрамафитовых тел варьирует в широких пределах (от первых десятков сантиметров до 20–300 м), и они прослеживаются по простиранию с небольшими перерывами до 7–13 км. Ультрамафиты представлены, в основном, пироксенитами, перидотитами и дунитами. В краевых частях встречаются амфиболизированные разности, которые рассматривают как горнблендиты, часто пироксен- и оливинсодержащие. По составу среди перидотитов присутствуют гарцбургиты, верлиты, лерцолиты и кортландиты, среди пироксенитов – вебстериты и бронзититы (Гусев и др., 2016).

Перидотиты имеют наиболее широкое распространение и представляют собой среднезернистые породы темно-зеленого или черного цвета с массивной или сланцеватой текстурой и преобладающей гранобластовой структурой (Гусев и др., 2016). По составу среди перидотитов выделяются гарцбургиты, верлиты, лерцолиты и кортландиты (Геологическая..., 1979).

Аляскиты и лейкократовые биотитовые граниты относятся к довольно распространенным магматическим породам данного района. Они образуют линзовидные тела, которые тяготеют к полям распространения гранитизированных пород и мигматитов. Наиболее крупные тела гранитов имеют мощность 200–300 м и протяженность до 4–10 км (Геологическая..., 1984).

Гиперстеновые граниты (чарнокиты) как правило состоят из железистого гиперстена с ортоклазом, кислого и среднего плагиоклаза, кварца и магнетита. Граниты, также, как и ультрамафиты, залегают согласно с вмещающими гнейсами в виде линзовидных тел протяженностью до 3–4 км. Среди них встречаются пегматитовые и аплитовые жилы, мигматиты, содержащие ксенолиты не полностью переработанного субстрата. По минеральному и химическому составу чарнокиты соответствуютряду гранит-монцодиоритам (Гусев и др., 2016).

На Анабарском щите, так же, как и в других районах развития древнейших пород Земной коры, присутствуют магматические комплексы, большую часть которых слагают анортозиты (Архей..., 1988).

1.3 Выводы по главе 1

Анабарский щит сложен породами, метаморфизованными в условиях гранулитовой фации, которые подразделяются на три серии – верхнеанабарскую, далдынскую и хапчанскую. Далдынская серия, в основном, представлена кристаллосланцами (эндербитами) мафитовыми гиперстеновыми И кристаллосланцами, занимающими две трети обнаженной поверхности, а также гнейсами И метаосадочными породами (преимущественно гранатовыми кварцитами). Далдынская серия распространена в центральной части щита и простирается субмеридианально сквозной полосой шириной до 70 км.

ГЛАВА 2 МЕТОДЫ ИССЛЕДОВАНИЯ

2.1 Методики исследования геохимических особенностей пород

Содержания петрогенных (главных) элементов в породах проанализированы рентгено-спектральным флуоресцентным методом на спектрометре ARL 9800 (аналитик Б.А. Цимошенко) по стандартной методике (ФГБУ «ВСЕГЕИ»). Определения Zr, Nb, Ta, Mo, Hf, Be, Cs, Rb, Ba, Sr, Th, U, W, Cr, V, Sb. Sn, REE, Y выполнены эмиссионной спектрометрией с индуктивно-связанной плазмой на спектрометре «ОРТІМА-4300» методом ICP-MS (аналитики В. А. Шишлов, В.Л. Кудряшов), Cu, Co, Ni, Zn, Pb, Li, Sc, B, Bi, Ge, As – методом ICP-AES (аналитик Э.Г. Червякова).

2.2 Методики исследования геохимических особенностей минералов

Содержание REE и редких элементов в цирконе определялось в точках, которые ранее были продатированы U-Pb методом, на ионном микрозонде Cameca IMS-4f в ЯФ ФТИАН (аналитики С.Г. Симакин, Е.В. Потапов) по методикам, приведенным в (Hinton, Upton, 1991; Федотова и др., 2008). Размер исследуемого участка минерала не превышал в диаметре 15–20 мкм; относительная ошибка измерения для большинства элементов составляла 10-15%; порог обнаружения элементов в среднем равнялся 10 ppb. При построении спектров распределения REE состав циркона нормировался на состав хондрита CL (McDonough, Sun, 1995). Оценка температуры кристаллизации циркона выполнена с помощью «Ti-в цирконе» («Ti-in-zircon») термометра (Watson et al., 2006).

Состав породообразующих минералов был определен методом SEM-EDS в ИГГД РАН (аналитик О.Л. Галанкина) на сканирующем электронном микроскопе JEOL JSM-6510LA с энергодисперсионной приставкой JED-2200. Точечные определения состава минералов выполнялись с использованием электронного луча с ускоряющим напряжением в 20 кВ и током 1 нА, размер пятна составлял 3 мкм. Время накопления каждого спектра составляло 50 с, в качестве стандартов использовались природные минералы, чистые оксиды и металлы. Для коррекции матричного эффекта использовался алгоритм ZAF.

2.3 Методики изотопно-геохимических исследований пород и минералов

Выделение монофракций циркона для изотопных исследований производилось из раздробленных пород (крупность дробления – в зависимости от их зернистости, обычно до 1 мм) в тяжелых жидкостях.

Sm-Nd системы монофракций минералов (граната, клинопироксена и/или амфибола) анализировались с применением метода изотопного разбавления (TIMS) для определения концентраций Sm и Nd (погрешность определения составляет $\pm 0.5\%$) на мультиколлекторном масс-спектрометре TRITON в ИГГД РАН (Скублов и др., 2010б). Для проведения анализа были выделены с применением тяжелых жидкостей монофракции минералов и дочищены вручную под бинокулярным микроскопом (по ~ 100 мг граната, клинопироксена и амфибола). Нередко в гранатах в виде включений находятся минералы с низким Sm/Nd отношением (апатит, монацит), присутствие которых значительно искажает результаты Sm-Nd датирования (Scherer et al., 2000). Поэтому, для селективного растворения возможных включений, имеющих низкое Sm/Nd отношение, для монофракций граната использовался метод сернокислотного выщелачивания, который включает в себя обработку истертых в агатовой ступке кристаллов/зерен граната в течение 24–25 часов концентрированной (96%) H_2SO_4 при температуре 180°С (Anczkiewicz, Thirlwall, 2003). Применение данного метода для обработки гранатов позволяет значительно увеличить диапазон вариации отношения ¹⁴⁷Sm/¹⁴⁴Nd и, значит, точность датирования (Березин и др., 2012). Построение изохрон, а также вычисление возраста исследованных образцов, параметров ε_{Nd} (с точностью ± 0.5) производились в программе К. Людвига Isoplot (Ludwig, 1999).

Определение концентраций и изотопного состава Sm и Nd в породе выполнено методом изотопного разбавления в Центре изотопных исследований ВСЕГЕИ им А.П. Карпинского (г. Санкт-Петербург). Для выделения Sm и Nd использована методика (Богомолов и др., 2002), близкая к (Richard et al., 1976). Изотопные составы Sm, Nd измерены на многоколлекторных масс-спектрометрах TRITON TI в статическом режиме. Измеренные отношения ¹⁴³Nd/¹⁴⁴Nd нормализованы к отношению ¹⁴⁶Nd/¹⁴⁴Nd=0.7219 и приведены к отношению ¹⁴³Nd/¹⁴⁴Nd=0.511860 в Nd стандарта La Jolla. Точность определения концентраций Sm, Nd составила +/-0.5%, изотопных отношений ¹⁴⁷Sm/¹⁴⁴Nd – +/- 0.5%, ¹⁴³Nd/¹⁴⁴Nd – +/- 0.003%, ⁸⁷Rb/⁸⁶Sr – 0.5%). Уровень холостого опыта 0.05-0.2 нг Sm, 0.1-0.5 нг Nd. При расчете величин єNd и модельных возрастов T_{Nd} (DM) использованы значения CHUR по (Jacobsen, Wasserburg, 1984) (¹⁴³Nd/¹⁴⁴Nd = 0.512638, ¹⁴⁷Sm/¹⁴⁴Nd = 0.1967) и DM по (Goldstein, Jacobsen, 1988) (¹⁴³Nd/¹⁴⁴Nd = 0.513151, ¹⁴⁷Sm/¹⁴⁴Nd = 0.2136).

Датирование циркона U-Pb методом проводилось в Центре изотопных исследований (ЦИИ) ВСЕГЕИ (Санкт-Петербург) на ионном микрозонде SHRIMP-II по стандартной методике (Williams et al., 1998; Schuth et al., 2012). Отобранные вручную зерна цирконов были имплантированы в эпоксидную смолу вместе с зернами цирконовых стандартов TEMORA и 91500. Далее зерна цирконов были сошлифованы и приполированы приблизительно на половину своей толщины. Для выбора участков (точек) анализа использовались оптические изображения зерен циркона (в проходящем и отраженном свете) и в режиме катодолюминесцентные изображения (CL), отражающие внутреннюю структуру и зональность циркона. Интенсивность первичного пучка молекулярного кислорода составляла 4нА, диаметр пятна (кратера) составлял 25 мкм при глубине 2 мкм. Обработка полученных данных осуществлялась с использованием программы SQUID (Ludwig, 2000). U-Pb отношения нормализовались на значение 0.0668, приписанное стандартному циркону TEMORA с возрастом 416.75 млн лет. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных значений конкордантных возрастов и пересечений с конкордией приводятся на уровне 25. Построение графиков с конкордией проводилось с использованием программы ISOPLOT/EX (Ludwig, 1999).

Определение Lu-Hf изотопного состава циркона выполнено методом ICP-MS лазерной абляцией с использованием 193 нм ArF лазера COMPex-102 системы абляции DUV-193 и мультиколлекторного масс-спектрометра с ионизацией в индуктивно связанной плазме ThermoFinnigan Neptune в ЦИИ ВСЕГЕИ, следуя методике, описанной в работе (Griffin et al., 2000). Конфигурация коллекторов масс-спектрометра позволяла одновременно регистрировать изотопы ¹⁷²Yb, ¹⁷⁴Yb, ¹⁷⁵Lu, ¹⁷⁶Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf. Для коррекции масс-дискриминации было использовано одно нормализующее отношение (178Hf/177Hf). Корректное значение ¹⁷⁶Нf было получено путем вычитания ¹⁷⁶Yb и ¹⁷⁶Lu (измерялись свободные от наложений ¹⁷²Yb и ¹⁷⁵Lu). Анализ изотопного состава выполнен в тех же точках, в которых проводилось U-Pb SIMS датирование, но диаметр точки составлял ~ 50 мкм, а глубина кратера 20-40 мкм. За период измерений средние величины 176 Нf/¹⁷⁷Нf для цирконовых стандартов составили 0.282701 ± 35 (TEMORA; n = 6), 0.282497 ± 27 (Mud Tank; n = 5) и 0.282009 ± 23 (GJ-1; n = 7). При обработке данных принята постоянная распада ¹⁷⁶Lu = 1.865×10-11 лет-1 (Scherer et al., 2001). Для расчета $\varepsilon_{\rm Hf}$ использованы хондритовые величины: ${}^{176}{\rm Lu}/{}^{177}{\rm Hf} = 0.0332$ и ¹⁷⁶Hf/¹⁷⁷Hf = 0.282772 (Blichert-Toft, Albarede, 1997). Модельный Hf возраст определен относительно деплетированной мантии (DM) с параметрами: 176 Lu/¹⁷⁷Hf = 0.0384 µ 176 Hf/¹⁷⁷Hf = 0.28325 (Chauvel, Blichert-Toft, 2001). Поскольку модельный возраст циркона (THf (DM) представляет минимальный возраст источника расплава, из которого он кристаллизовался, был рассчитан более реалистичный двухстадийный возраст T_C Hf, полученный проецированием инициального ¹⁷⁶Hf/¹⁷⁷Hf циркона к линии деплетированной мантии, используя среднекоровую величину 176 Lu/ 177 Hf = 0.015 (Griffin et al., 2000).

Изотопный состав кислорода в цирконе был исследован на ионном микрозонде Cameca IMS-1280 (Институт геологии и геофизики Китайской академии наук) по методике, подробно описанной в (Gao et al., 2014). Исследование изотопного состава кислорода в цирконе проводилось в тех же областях (с последующим контролем на электронном микроскопе в режиме BSE), где изучалась U-Pb система и распределение редких элементов. После изотопногеохимического исследования шайба с цирконом была переполирована, чтобы удалить с поверхности циркона кислород от первичного пучка, привнесенным при предыдущем ионном зондировании. Условия съемки ионного микрозонда Сатеса IMS-1280: первичный пучок ионов цезия (Cs+), ускоряющее напряжение первичного пучка до 10 кэВ с интенсивностью ~ 2 нА, размер пучка составляет ~ 10–15 мкм (анализируемая область имеет форму квадрата с длиной каждой стороны 10–15 мкм). Измеренные отношения ¹⁸O/¹⁶O были нормализованы на стандарт VSMOW (¹⁸O/¹⁶O = 0.0020052). Фактор приборного фракционирования масс определялся с помощью определения стандарта Теmora-2 и контролировался независимым измерением стандарта 91500, включенный в тот же препарат.

Термобарометрические исследования выполнены методом «Thermobarometry With Estimation of EQUilibrium state» (TWEEQU) (Berman, 1991) с помощью программного комплекса TWQ (версия 2.02) Р. Бермана, Т. Брауна. Данный метод основан на одновременном решении системы уравнений, каждое из которых описывает равновесное состояние между минеральными компонентами (миналами или конечными членами изоморфных рядов). Система состоит из k химических компонентов и m конечных членов твердых растворов минералов (миналов), существует только m-k линейно независимых реакций. Равновесное состояние описывается реакций уравнениями типа: n_aA+n_bB=n_cC+n_dD, где A, B, C, D – миналы минералов, участвующих в реакции, а n – стехиометрические коэффициенты уравнения реакции.

Для оценки эволюции параметров метаморфизма использовалась методика THERIAK/DOMINO (Wei, 2004), основанная на минимизации свободной энергии Гиббса, в системе NCKFMATSH при предполагаемом избытке воды (не менее 20 мас. %) с базами данных jun92.bs и tcdb55. Для проверки полученных P-T значений были выполнены расчеты методом псевдосекций и изоплет в программе Theriak-Domino с базой JUN92d.bs, являющейся аналогом согласованной базы термодинамических данных, используемой в TWQ (Wei, Powell, 2004). Поскольку в полиметаморфических комплексах часто встречается локальная неоднородность по размещению и составу минералов наиболее подходящим методом для оценки валового состава породы с равновесными минеральными парагенезисами (т. н. EBC – Effective Bulk Compositions (Capitani, Petrakakis, 2010) является его расчет по реальным соотношениям минералов в препарате и их составам. Для рассчитанного таким образом состава породы были построены изоплеты конечных членов составов граната (Alm, Py, Grs), плагиоклаза (An), магнезиальности и содержания Al в ромбическом пироксене (ф.е.). Далее, сравнивая расчетные составы с измеренными, была построена довольно компактная область (черный эллипс на рисунке 3.25), где составы минералов совпадают.

2.4 Выводы по главе 2

Применение современных локальных методов, позволяющих достаточно точно определить возраст по циркону, редкоэлементый состав породообразующих минералов и циркона, изотопный состав кислорода в цирконе из гранулитов, позволило добиться необходимой представительности аналитических данных для получения дополнительной информации о происхождении и эволюции ранней континентальной коры.

ГЛАВА 3 ГЕОЛОГО-ПЕТРОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА И ОСОБЕННОСТИ СОСТАВА ПОРОД И МИНЕРАЛОВ ГРАНУЛИТОВ

3.1 Геолого-петрографическая характеристика

На изученном участке, расположенном в правобережье р. Бол. Куонамка в районе устья р. Далдын, преимущественно обнажаются гиперстеновые плагиогнейсы и двупироксеновые плагиокристаллосланцы с подчиненными прослоями небольшой мощности (первые метры) мафитовых кристаллосланцев, амфиболитов, реже ультрамафитов. Ниже приведено петрографическое описание опорных образцов.

Биотит-гиперстеновый кристаллосланец (обр. 508).

биотит-гиперстеновых Минеральный состав кристаллосланцев представлен ассоциациями Pl_{30} +Fsp+Opx+Bt+Ap+Qtz+Ilm (рисунок 3.1). Акцессорные минералы апатит, циркон. Кварц встречается как второстепенный минерал. Плагиоклаз, относящийся к олигоклазу, образует вытянутые, изометричные зерна. Биотит темно-коричневного цвета по Ng развит В виде чешуйчатых, вытянутых кристаллов, развивается ПО ортопироксену и замещается плагиоклазом. Ортопироксен, представленный гиперстеном, встречается в виде отдельных изометричных кристаллов или скоплений. В некоторых кристаллах пироксена наблюдаются включения биотита. Структура породы лепидогранобластовая.

Рисунок 3.1 – Биотит-гиперстеновый кристаллосланец. Минеральный состав Pl+Fsp+Hyp+Bt+Ap+Qtz+Ilm

Биотит-двупироксеновый гнейс (обр. 2005/1).

Структура лепидогранобластовая, текстура линзовидно-полосчатая. Минеральный состав: полевые шпаты – 45–55%, кварц – 30–35%, биотит – 8– 12%, ортопироксен (гиперстен) – 7–10%, клинопироксен – 5–8%, магнетит, апатит, кальцит, серпентин – до 1–2%. Линзовидно-полосчатое строение породы обусловлено обособлениями крупных (до 6 мм и более) удлиненных и субпараллельно ориентированных зерен кварца и полевых шпатов с общем редкими чешуями биотита на более мелкозернистом фоне Полевые полиминерального состава. шпаты В различной степени карбонатизированы. На границах зерен в полевых шпатах встречаются прорастания кварца (рисунок 3.2). Биотит мирмекитовые слагает удлиненные, часто расщепляющиеся красно-бурые чешуи по Ng и светложелтые по Np длиной до 1.2 мм. Клинопироксен преобладает в гранобластовой форме светло-зеленого цвета размером 0.5–1.5 мм, обычно не затронут вторичными процессами. Гиперстен по периферии зерен, трещинам спайности и поперечным трещинам, интенсивно замещается красно-бурым биотитом. Характерны удлиненные кристаллы 4×9 мм, ориентированные вдоль гнейсовидности. Неравномерно, преимущественно на полевошпатовых участках, порода усеяна тонкой пленкой кальцита.

Рисунок 3.2 – Биотит-двупироксеновый гнейс

Гранат-пироксеновый амфиболит (обр. 166)

Для гранат-пироксеновых амфиболитов характерны парагенезисы Pl+Hbl+Opx+Gr (рисунок 3.3). Плагиоклаз образуется изометричные и кристаллы с полисинтетическими двойниками. Амфибол вытянутые представлен крупными вытянутыми кристаллами роговой обманки. Ортопироксен (гиперстен) изометричный, местами вытянутый. Биотит встречается как второстепенный минерал в виде мелких отдельных вытянутых кристаллов.

Рисунок 3.3 – Гранат-пироксеновый амфиболит. Минеральный состав Pl+Hbl+Hyp+Gr

Лейкократовый гиперстеновый плагиогнейс (обр. 167)

Лейкократовый гиперстеновый плагиогнейс сложен преимущественно кварц-полевошпатовым агрегатом с небольшим количеством гиперстена и биотита (рисунок 3.4). Структура гранобластовая. Плагиоклаз, в основном, образует умеренно удлиненные с неправильными очертаниями кристаллы сдвойникованного и несдвойникованного андезина. Кварц представлен линзовидными удлиненными кристаллами с волнистым погасанием. Биотит в виде мелких кристаллов. Акцессорный минерал представлен апатитом, среди рудных минералов отмечаются магнетит и ильменит. Низкотемпературные изменения выражены в большом развитии серицитового вещества.

Рисунок 3.4 – Гиперстеновый плагиогнейс. Минеральный состав Pl+Qtz+K-Fsp+Hyp

Гиперстеновый плагиогнейс (обр. 169)

Структура гнейсовидная. Гиперстеновый плагиогнейс преимущественно сложен кварц-полевошпатовым агрегатом (рисунок 3.5). Плагиоклаз, в основном, кислого состава, образует как полисинтетические двойники, так и несдвойиникованные зерна. Кварц с волнистым погасанием представлен изометричными зернами, местами они вытянутые, удлиненные. Среди темноцветных минералов отчетливо выделяются изометричные зерна ортопироксена, представленные гиперстеном.

Рисунок 3.5 – Гиперстеновый плагиогнейс. Минеральный состав Pl+Qtz+K-Fsp+Hyp

Плагиоклазовый вебстерит (обр. 171)

Минеральный состав: Орх (60%), Срх (15%), Pl (15%), Flog (5%), Spl (5%). Ортопироксен, не плеохроирующий, образует как удлиненные таблитчатые выделения, так и изометричный агрегат основной массы. Местами содержит включения оливина, реже - клинопироксен. Шпинель - зеленая в основной массе порода, как в единичных зернах, так и в агрегатах.

Чарнокит (обр. 508Б)

Лейкокократовая порода с гнейсовидной структурой (рисунок 3.6). Основными породобразующими минералами являются кварц, плагиоклаз, калиевый полевой шпат, гранат, биотит, ортопироксен (как второстепенный минерал). Кварц образует вытянутые крупные линзовидные зерна с волнистым погасанием. Плагиоклаз кислого состава, представлен умеренно удлиненными сдвойникованными и несдвойникованными зернами. Гранат пироп-альмандинового состава образует порфиробласты с высоким рельефом. Интенсивно плеохроирующий в коричневых тонах биотит встречается в виде порфиробластов с неправильными формами зерен. Низкотемпературные изменения проявлены в серицитизации.

Рисунок 3.6 – Чарнокит. Минеральный состав Qtz+Pl+Gr+Bt+Hyp

3.2 Особенности состава пород и минералов гранулитов

На основании петрографических особенностей и по химическому составу породы далдынской серии можно разделить на ортопороды (мезократовые кристаллосланцы; плагиогнейсы и гнейсы; метаультрамафиты) и парапороды (метаосадочные породы – кварциты). Содержания петрогенных и редких элементов в породах приведены в таблице 3.1.

3.2.1 Особенности состава ортопород Мезократовые кристаллосланцы

Главные элементы. Мезократовые кристаллосланцы (обр. 508, 509, 169-1) далдынской серии по содержанию главных элементов отвечают андезитам и андезито-базальтам. Содержание кремнезема варьирует от 48.6 мас. % до 55 мас. %. Породы низкокалиевые (К₂О = 0.71–1.19 мас. %), высокоглиноземистые (Al₂O₃ = 16.5-18.8 мас. %), умереннотитанистые (Ti₂O = 0.82-1.25 мас. %), СаО (5.71-9.51 мас. %), со средними содержаниями по железу (Fe₂O₃t = 7.94-9.61 мас. %, кроме обр. 174), содержание Na₂O ~ 4 мас. %. Кристаллосланцы соответствуют известково-щелочной серии (рисунок 3.10). Магнезиальность (Mg#) варьирует в пределах от 31 до 50. Положение точек области составов мезократовых кристаллосланцев преимущественно В ортопород на диаграмме P_2O_5/TiO_2 -MgO/CaO (Werner, 1987).

Редкие элементы. Содержание Rb сильно варьирует в пределах от 2.72 до 28.9 ppm. Отношение K/Rb в метабазитах меняется в пределах от 170 до 1066. По содержаниям Th и U фигуративные точки обр. 169-1 и 509 располагаются между усредненными составами базальтов В поле срединноокеанических хребтов и (MORB) и океанических островов (OIB) (Sun, McDonough, 1989) (рисунок 3.7). Величина Th/U отношения (3–7) может свидетельствовать о том, что породы не испытывали обеднение U при гранулитовом метаморфизме. Кристаллосланцы имеют повышенную величину La/Th отношения, но при этом изменяется в широких пределах от 7 до 34, что может свидетельствовать о деплетированности пород торием.

группа	а мезократовые кристаллосланцы					Плагиогнейсы и гнейсы				Грани	тоиды		Метаультрамафиты					
образец	174	169-1	508	509	165	166-3	167	169	165-1	170	508A	508Б	166	166-1	166-2	168	171	
SiO ₂	48.6	55.0	53.8	53.6	67.1	65.9	67.9	66.9	72.0	75.9	73.9	74.8	43.6	49.6	45.0	48.7	46.5	
TiO ₂	1.25	1.12	1.01	0.82	0.26	0.54	0.01	0.49	0.13	0.15	0.17	0.16	0.97	0.69	0.15	1.44	0.47	
Al_2O_3	18.7	18.8	16.5	18.1	16.9	16.9	18.2	16.6	15.8	12.5	13.1	12.7	15.6	19.4	2.08	13.0	9.00	
Fe ₂ O ₃	3.12	2.18	2.63	2.96	1.52	2.26	0.59	1.87	0.73	1.06	0.95	0.88	4.94	3.63	5.00	4.82	4.85	
FeO	8.02	5.19	6.29	5.19	1.31	1.97	0.79	1.97	0.79	0.31	0.79	1.26	9.2	5.76	5.11	8.8	8.17	
MnO	0.19	0.10	0.19	0.13	0.05	0.07	0.04	0.07	0.03	0.02	0.04	0.06	0.17	0.13	0.18	0.24	0.19	
MgO	4.68	2.96	7.94	5.42	1.30	1.51	0.57	1.47	0.30	0.24	0.65	0.79	10.4	5.58	28.5	7.20	22.2	
CaO	9.51	8.18	5.71	8.39	5.49	4.64	4.98	4.16	3.82	1.09	1.72	1.07	10.9	9.99	7.40	12.3	6.13	
Na ₂ O	3.78	4.28	3.69	3.96	4.26	4.76	4.22	4.91	4.51	1.88	2.81	2.67	1.77	3.68	0.50	2.23	0.77	
K ₂ O	0.79	1.11	1.19	0.71	0.86	0.95	1.05	1.14	1.05	5.83	4.46	4.24	0.95	0.66	0.13	0.38	0.50	
P_2O_5	0.36	0.33	0.27	0.13	0.20	0.14	0.03	0.08	0.00	0.00	0.00	0.00	0.00	0.13	0.03	0.06	0.03	
П.П.П.	< 0.1	0.19	< 0.1	< 0.1	0.4	0.12	1.57	0.15	0.74	0.43	0.93	0.99	0.52	0.13	5.43	0.50	0.05	
Сумма	99.9	100	100	100	99.8	99.97	99.9	99.9	100	99.4	99.7	99.8	100	100	99.6	100	99.7	
Rb	7.29	8.64	28.9	2.72	4.98	6.82	12.9	7.72	5.94	152	62.0	54.2	6.99	5.10	2.71	5.18	11.2	
Sr	711	487	134	343	319	242	444	284	340	167	112	106	120	415	23.9	123	183	
Ba	277	400	428	289	555	595	382	636	404	3660	1640	1840	54.3	82.3	4.70	68.7	155	
Y	33.2	11.7	21.0	15.8	14.5	7.73	0.62	5.69	1.51	5.20	7.14	11.7	11.5	6.35	3.69	24.0	8.11	
Zr	103	39.6	186	75.7	174	133	14.5	120	124	312	175	179	67.0	38.3	11.1	58.1	43.5	
Nb	10.4	8.70	11.6	6.31	2.53	8.29	0.03	9.01	1.85	3.47	2.11	1.83	3.80	5.32	1.23	5.95	2.39	
Hf	2.79	1.19	4.28	2.22	4.34	3.18	0.24	2.83	3.09	8.68	4.62	4.98	1.65	0.86	0.42	1.72	1.25	
Та	0.49	0.80	0.62	0.27	0.05	0.96	0.05	0.31	0.05	0.26	0.05	0.05	0.28	0.37	0.05	0.35	0.13	
Pb	0.50	4.13	4.00	4.25	2.55	8.43	0.50	4.35	7.35	14.2	18.0	8.97	5.91	11.0	5.16	1.37	12.5	
Th	0.59	1.38	6.8	0.62	1.53	3.66	0.27	1.26	7.20	32.1	17.0	14.2	3.88	2.09	0.26	0.52	0.89	
U	0.38	0.49	0.92	0.12	0.18	0.60	0.05	0.24	0.16	0.56	0.49	0.58	1.75	1.04	0.17	0.12	0.19	

Таблица 3.1 – Содержание петрогенных и редких элементов в породах далдынской серии Анабарского щита

Продолжение таблицы 3.1

группа		мезокр кристалл	атовые юсланцы		Плагиогнейсы и гнейсы					Грани	тоиды		Метаультрамафиты					
образец	174	169-1	508	509	165	166-3	167	169	165-1	170	508A	508Б	166	166-1	166-2	168	171	
V	237	143	161	150	56.8	55.3	14.7	1.26	14.8	16.3	24.5	24.0	352	222	100	342	132	
Cr	34.7	35.0	81.6	81.0	60.2	37.1	37.4	44.9	27.4	31.6	49.4	14.7	17.8	26.0	2450	75.5	1990	
Ni	14.7	22.0	53.6	66.6	13.2	11.5	10.2	22.5	1.77	2.80	5.62	2.59	158	96.3	1170	43.1	966	
La	18.9	28.9	48.1	21.2	44.0	21.5	6.22	14.6	40.0	102	59.3	51.2	17.7	9.63	0.95	5.13	7.28	
Ce	50.2	55.7	92.9	47.2	75.7	37.5	7.77	25.7	65.4	164	86.0	76.2	34.3	15.7	2.10	12.8	13.9	
Pr	7.44	6.52	10.6	5.88	8.25	4.18	0.68	2.67	6.21	15.8	7.39	6.70	3.71	1.69	0.25	1.82	1.68	
Nd	34.1	24.5	38.7	23.3	31.2	13.7	1.73	9.27	19.2	50.8	21.5	19.2	14.3	6.62	1.18	9.53	7.13	
Sm	6.75	3.97	6.29	4.21	5.80	2.71	0.18	1.42	2.01	4.99	2.46	2.31	2.34	1.11	0.35	2.58	1.32	
Eu	1.93	1.31	1.82	1.34	1.06	0.83	0.68	0.69	0.87	1.39	0.93	0.85	1.04	0.61	0.16	1.03	0.49	
Gd	6.86	3.51	5.53	4.01	4.76	1.96	0.19	1.47	1.27	3.15	2.17	2.19	2.38	1.16	0.45	3.29	1.44	
Tb	1.00	0.44	0.76	0.52	0.65	0.29	0.02	0.20	0.13	0.30	0.27	0.35	0.33	0.20	0.08	0.63	0.22	
Dy	5.87	2.25	3.96	2.9	3.23	1.40	0.11	1.13	0.37	1.32	1.25	1.63	2.08	1.15	0.53	4.02	1.38	
Но	1.06	0.40	0.78	0.55	0.54	0.26	0.02	0.19	0.07	0.20	0.24	0.38	0.37	0.27	0.11	0.87	0.26	
Er	3.50	1.11	2.11	1.63	1.29	0.53	0.05	0.56	0.12	0.49	0.83	1.35	1.08	0.67	0.35	2.55	0.87	
Tm	0.51	0.15	0.32	0.23	0.18	0.07	0.01	0.08	0.02	0.09	0.13	0.21	0.18	0.09	0.05	0.36	0.14	
Yb	2.87	0.98	1.95	1.43	0.83	0.72	0.07	0.55	0.14	0.46	0.93	1.46	1.26	0.69	0.31	2.31	0.70	
Lu	0.43	0.13	0.29	0.24	0.13	0.09	0.01	0.08	0.02	0.07	0.15	0.22	0.17	0.09	0.05	0.34	0.10	
REE	139	130	214	115	178	85.7	17.7	58.6	136	345	184	164	81.2	39.7	6.91	47.3	36.9	
LREE	111	116	190	97.6	159	76.9	16.4	52.2	131	333	174	153	70.0	33.6	4.48	29.3	30.0	
HREE	19.5	7.98	13.8	10.2	10.2	4.70	0.43	3.79	1.92	5.49	5.33	6.85	6.97	3.76	1.69	12.5	4.49	
La_N/Sm_N	1.75	4.55	4.78	3.14	4.74	4.95	21.6	6.42	12.4	12.8	15.1	13.8	4.72	5.42	1.69	1.24	3.44	
La _N /Gd _N	2.31	6.91	7.30	4.44	7.76	9.21	27.5	8.34	26.4	27.2	22.9	19.6	6.24	6.97	1.77	1.31	4.24	
La_N/Lu_N	4.56	23.1	17.2	9.17	35.1	24.0	64.6	19.2	181	163	41.0	24.2	10.8	11.5	2.14	1.57	7.95	

Рисунок 3.7 – Диаграмма U-Th для кристаллосланцев. 1 – MORB; 2 – OIB (Sun, McDonough, 1989)

Содержание Со (18–41 ppm), V (143–237 ppm), Cr (35–82 ppm), Ni (15– 67 ppm), что сопоставимо с толеитовыми базальтами зеленокаменных поясов типа TH-2 (Co = 55 ppm, V = 365 ppm, Cr = 250 ppm, Ni = 125 ppm (Конди, 1983).

Спектры распределения REE в мезократовых кристаллосланцах имеют сильно дифференцированный характер ($La_N/Yb_N = 10.1-20$) и сходны со спектрами архейских толеитов зеленокаменных поясов TH-2 (рисунок 3.8а). Породы обогащены LREE и обеднены HREE ($Gd_N/Yb_N = 2.5$), Eu-аномалия отсутствует или слабо проявлена как отрицательная (Eu/Eu* = 0.86–1.05).

Рисунок 3.8 – Спектры распределения REE (а) и мультиэлементные спектры (б) для мезократовых кристаллосланцев. Для сравнения показаны спектры толеитов TH-2 архейских зеленокаменных поясов и архейских андезитов (Condie, 1983)

Плагиогнейсы и гнейсы

Главные элементы. Плагиогнейсы и гнейсы (обр. 165, 166-3, 167, 169) по содержанию петрогенных элементов сопоставляются с магматическими породами дацитами (SiO₂ – 66–68 мас.%) с высоким содержанием Al₂O₃ (17– 18 мас.%), Na₂O (4–5 мас.%) и CaO (в среднем 4.8 мас.%).

Рисунок 3.9 – Диаграмма Mg/Cao – P₂O₅/TiO₂

Точки составов пород на тройной диаграмме AFM расположены в поле известково-щелочной серии (рисунок 3.10). На классификационной диаграмме Ab-An-Or (рисунок 3.10) (O'Connor, 1965) фигуративные точки составов кислых пород попадают в поле тоналитов (пробы 165, 167), трондьемитов (проба 166-3).

Рисунок 3.10 – АFM диаграмма

Редкие элементы. Содержание калия в плагиогнейсах и гнейсах варьирует в пределах от 0.36 до 0.47 мас.%. На диаграмме K-Rb

группируются вдоль «главного тренда магматических пород» (K/Rb = 250), породы характеризуются высоким K/Rb (отношение варьирует в пределах от 333 до 723), низким отношением Rb/Sr (Rb/Sr = 0.03). Высокое отношение K/Rb в гранулитах говорит о преимущественной потере Rb по сравнению с K (Rudnick et al., 1985). Th/U отношение в породах составляет 5.2–8.5, что превышает значения для большинства магматических пород и среднекоровую величину (Th/U ~ 4) (Тейлор, Мак-Леннан, 1988).

Рисунок 3.11 – Спектры распределения REE (а) и мультиэлементные спектры (б) для плагиогнейсов и гнейсов

Гнейсы характеризуются величинами La/Th отношения 6-23.

Анализ распределения редких элементов, способных мигрировать с флюидом при метаморфизме гранулитовой фации показал, что все породы обеднены U и характеризуются повышенным Th/U отношением. Спектры распределения REE имеют дифференцированный характер от La к Lu (La/Yb)_N от 16 до 57) (рисунок 3.11). В обр. 166-3 и 169 осутствует или провялена слабоая положительная Eu-аномалия (Eu/Eu* = 1.05–1.45), для обр. 165 наблюдается умеренная отрицательная Eu-аномалия (Eu/Eu* = 0.60). При этом, для обр. 167 характерна положительная аномалия по Eu (Eu/Eu* = 11.2). Содержания Cr, Ni, Co в гнейсах среднего состава (Cr = 37–60 ppm, Ni = 10–22 ppm, Co = 1–14 ppm).

Метаультрамафиты

Главные элементы. Интрузивные образования, залегающие среди кристаллосланцев, на изученном участке представлены плагиоклазовыми (обр. 171), оливиновыми вебстеритами (обр. 166-2), гранат-гиперстеновыми амфиболитами (обр. 166). По содержанию петрогенных элементов породы сопоставляются с пироксенитами (SiO₂ – 43.6–46.5 мас. %). Для обр. 166-2 и 171 характерны высокие содержания MgO (22.2–28.5 мас. %), породы умереннокальциевые (CaO – 6.13–7.4 мас. %), В гранат-пироксеновых амфиболитах содержание MgO ниже (10.4 мас.%), а CaO выше (10.9 мас.%). Метаультрамафиты низкотитанистые (TiO₂ – 0.15–0.97 мас. %), с низким содержанием K₂O (0.13–0.95 мас. %) и Na₂O (0.50–0.77 мас. %, кроме обр. 166) (таблица 3.1).

Редкие элементы.

Общими геохимическими особенностями для обр. 166, 166-2 и 171 являются положительные аномалии K, U, Pb, Eu (Eu/Eu* = 1.08-1.34), отрицательные аномалии Ba, Ta (кроме обр. 171), Nb. Спектры распределения REE для обр. 166 и 171 имеют дифференцированный характер (La/Yb)_N от 6.30 до 8.51) (рисунок 3.12a). Напротив, плагиоклазовые вебстериты отличаются пологим спектром распределения (La/Yb)_N = 1.85).

От гранат-пироксеновых амфиболитов к оливиновым вебстеритам суммарное содержание REE снижается от 81.24 до 6.91 ppm.

Рисунок 3.12 – Спектры распределения REE (а) и мультиэлементные спектры (б) для метаультрамафитов

3.2.2 Особенности состава пород метаосадочной ассоциации Кварциты

Главные элементы. В кварцитах далдынской серии (обр. 523, 820, 823-1, 831-1, 847) содержание SiO₂ варьирует от 80.6 до 98.5 мас. % (таблица 3.2). В кварцитах наблюдаются низкие величины алюмокремниевого модуля $(AM = Al_2O_3/SiO_2)$ (0.01–0.07), величина натриевого модуля (HM = Na₂O/Al₂O₃) варьирует в пределах от 0.01 до 0.20, что соответствует

терригенным отложениям (Сергеева и др., 2020). Значения железистого модуля (ЖМ = FeO+Fe₂O₃+MnO)/Al₂O₃+TiO₂) (0.07–0.69) указывают на глиноземистый состав пелитов. Модуль нормированной щелочности (HKM = Na₂O+K₂O/Al₂O₃) равен 0.07–0.69. Величина индекса химического изменения (CIA = (Al₂O₃/Al₂O₃+CaO+Na₂O+K₂O)*100) изменяется в широких пределах (43–90), что косвенно указывает на различные источники сноса.

Редкие и редкоземельные элементы. В кварцитах суммарное содержание REE варьирует в пределах от 24 до 36 ppm (кроме обр. 831-1-9ррт) (таблица 3.3). Спектры распределания REE дифференцированны (отношение $La_N/Yb_N = 0.4-39$) и близки к PAAS (Nance, Taylor, 1976), но по постархейскими глинистыми сравнению с сланцами обнаруживают некоторое обеднение REE (рисунок 3.13), что типично для богатых кварцем осадочных пород (Cullers et al., 1975; Nance, Taylor, 1976; Basu et al., 1982). Для обр. 831-1, 847 и 823-1 характерна отрицательная Eu-аномалия (Eu/Eu* = 0.42-1.29), в обр. 820 она проявлена слабо (Eu/Eu* = 0.93), а в обр. 523, напротив, наблюдается положительная аномалия по Eu (Eu/Eu* = 1.29). Кварциты характеризуются низкими содержаниями Th (0.76–3.95 ppm) и U (0.05–0.58 ppm), величина Th/U отношения составляет в среднем 7.18, кроме обр. 823-1 (Th/U = 19.2) (Сергеева и др., 2020).

Таблица 3.2 – Содержание петрогенных элементов (масс. %) в породах метаосадочной ассоциации далдынской серии (Анабарский щит)

образец	820	831-1	523	847	823-1
SiO ₂	93.7	98.5	91.3	88.1	80.6
TiO ₂	0.14	0.06	0.09	0.05	0.19
Al ₂ O ₃	5.03	1.39	4.58	3.60	5.64
Fe ₂ O ₃	0.1	0.07	0.05	0.15	2.84
FeO	0.13	0.13	0.25	0.13	4.35
MnO	0.01	0.01	0.02	0.02	0.07
MgO	< 0.1	< 0.1	0.14	2.84	5.03
CaO	0.01	0.01	0.05	3.98	0.51
Na ₂ O	0.05	0.05	0.92	0.47	0.05
K_2O	0.79	0.1	2.25	0.25	0.34
P_2O_5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
П.П.П.	< 0.1	< 0.1	0.21	< 0.1	<.1
Сумма	100	100	99.9	99.6	99.62
AM	0.05	0.01	0.05	0.04	0.07
HM	0.01	0.04	0.20	0.13	0.01
КМ	0.16	0.07	0.49	0.07	0.06
ЖМ	0.19	0.20	0.16	0.14	1.48
(НМ+КМ)	0.17	0.11	0.69	0.20	0.07
CIA	85.6	90.0	58.7	43.4	86.2

и петрохимические параметры

Примечание:

$$\begin{split} AM &= Al_2O_3/SiO_2 \\ HM &= Na_2O/Al_2O_3 \\ KM &= K_2O/Al_2O_3 \\ \mathcal{W}M &= FeO+Fe_2O_3+MnO)/Al_2O_3+TiO_2 \\ (HM + KM) &= Na_2O + K_2O/Al_2O_3 \\ \end{split}$$
 Индекс химического выветривания (CIA) = [Al_2O_3/(Al_2O_3 + CaO+ Na_2O + K_2O)] \times 100

метаосадочной ассоциации далдынской серии

образец	820	831-1	523	847	823-1
La	8.74	2.37	5.34	8.95	2.63
Ce	16.1	4.38	9.93	14.8	4.34
Pr	1.72	0.43	1.15	1.48	0.44
Nd	6.04	1.52	4.09	4.45	2.15
Sm	1.11	0.15	0.69	0.56	0.90
Eu	0.27	0.02	0.29	0.12	0.22
Gd	0.71	0.14	0.68	0.68	2.29
Tb	0.10	0.02	0.10	0.10	0.55
Dy	0.40	0.06	0.56	0.64	5.00
Но	0.09	0.02	0.12	0.15	1.38
Er	0.16	0.02	0.34	0.39	4.76
Tm	0.03	0.00	0.05	0.07	0.70
Yb	0.18	0.04	0.40	0.42	4.25
Lu	0.03	0.01	0.07	0.07	0.55
Th	3.03	0.76	2.08	3.95	0.96
U	0.31	0.10	0.46	0.58	0.05
Rb	10.4	<2.0	45.2	8.00	9.90
Ba	37.3	20.6	588	40.1	172
Sr	9.02	1.04	36.3	49.7	4.00
Zr	121	60.5	171	48.6	57.8
Hf	3.01	1.36	4.62	1.30	1.56
Та	0.15	<0.1	0.16	0.43	0.05
Nb	2.65	< 0.5	1.54	2.36	1.65
Y	1.73	0.24	3.45	3.65	37.1
Th/U	9.77	7.60	4.52	6.81	19.2
ΣREE	35.7	9.17	23.8	32.9	30.2
(La/Yb) _N	4.92	9.87	4.83	9.98	1.82
(La/Sm) _N	33.0	39.3	9.07	14.5	0.42
Eu/Eu*	0.93	0.42	1.29	0.59	0.47

(Анабарский щит)

Рисунок 3.13 – Спектры распределения REE для кварцитов. Для сравнения показаны спектры PAAS – постархейские глинистые сланцы (Nance, Taylor,

1976)

Низкие содержания Со, Ni, Cu, наряду с низким содержанием REE, определяют положение фигуративных точек кварцитов на рисунке 3.14 вне области глубоководных осадков.

Рисунок 3.14 – Положение кварцитов на диаграмме Σ REE – Co + Ni + Cu (Bonnot-Courtois, 1981)

3.3 Особенности состава минералов

Состав породообразующих минералов и их состав по редким и редкоземельным элементам в изученных образцах представлены в Приложении.

Биотит-гиперстеновый кристаллосланец (обр. 508) сложен Pl (50%), Нур (30%), Bt (19%), Ap (1%).

Рисунок 3.15 – Биотит-гиперстеновый кристаллосланец (обр. 508)

В кристаллосланцах ортопироксен образует изометричные кристаллы размером (рисунок 3.15) и по составу главных элементов относится к магнезиальной группе и представляет смесь ферросилитового (54-57 %) и энстатитового (60-63%)миналов с незначительным присутствием компонента (1.0–1.5 %) (рисунок 3.16). Значения волластанитового магнезиальности (Х_{Ме}) в среднем 0.57 (Приложение А, таблица А.1). Содержания Al_2O_3 в ортопироксене низкие (1.34 мас.% в среднем), что, возможно, соответствует их кристаллизации при высокобарных условиях. Содержание FeO = 25.24 мас.%, в среднем, MgO варьирует в пределах 18.84-19.90 мас.%

Рисунок 3.16 – Диаграмма (Morimoto et al., 1988) для ортопироксена из биотит-гиперстенового кристаллосланца (обр. 508)

Двупироксеновый плагиогнейс (обр. 169-1) сложен Pl (60%), Amp (10%), Opx (15%), Cpx (5%), Ap (1%) (рисунок 3.17).

Двупироксеновый плагиогнейс является лейкократовым основным гранулитом с ассоциацией Pl-(Opx+CPx) (62 и 24 об.%, соответственно) при незначительной доле рудного минерала и амфибола (8 об.%), развивающегося по пироксенам.

Рисунок 3.17 – Взаимоотношения минералов в двупироксеновом палгиогнейса (обр. 169-1)

Ортопироксен из плагиогнейса относится к магнезиальной группе и по соотношению главных элементов соответствует к ферросилит-энстатиту с вариациями компонентов $En_{48.4-50.4}Fs_{48.4-50.18}$ и содержанием кальциевого компонента $Wo_{1.1-1.4}$ (рисунок 3.18). Значения X_{Mg} изменяются в пределах 0.49–0.539 (Приложение А, таблица А2). Ортопироксены характеризуются низким содержанием Al_2O_3 (0.87–1.33 мас.%), TiO₂ (<0.5 мас.%).

Рисунок 3.18 – Диаграмма (Morimoto et al., 1988) для ортопироксенов и клинопироксенов из двупироксенового плагиогнейса (обр. 169-1)

Распределение REE в ортопироксенах дифференцированное (La/Yb)_N = 0.98). Для точек 14 и 15 величина Eu-аномалии варьирует в пределах от 0.44 до 0.52 (Приложение А, таблица A8). Суммарное содержание REE от 3.95 до 5.85 ppm. Точка 16 характеризуется пониженным содержанием LREE в отличие 14 и 15 (LREE = 1.12 ppm), Eu-аномалия практически отсутствует (Eu/Eu*=0.74). Ортопироксены характеризуются повышенными содержаниями Ti (385 ppm, здесь и далее в среднем), средними содержаниями Cr (147 ppm, в среднем), V (79 ppm, в среднем).

Клинопироксен в породе по составу относится к авгит-диопсиду с соотношением компонентов $Wo_{44.5-46.5}En_{32.6-34.5}Fs_{20.4-21.4}$ ($X_{Mg} = 0.607-0.675$). Содержание Al_2O_3 в среднем 2.55 мас. %, CaO ~21.6 мас.%. Для клинопироксена получены диференцированные спектры распределения от La к Lu (La/Yb)_N ~ 2.52) с отрицательной Eu-аномалией (Eu/Eu* = 0.25). В

отличие от ортопироксена наблюдается повышенное суммарное содержание REE ($\Sigma REE = 332-414$ ppm). Клинопиркосен характеризуется повышенными содержаниями Ti (1441–1910 ppm) и V (273–310 ppm), средними по Cr (143 ppm, в среднем).

Амфибол по содержанию главных компонентов относится В кальциевой представлен, ферропаргаситом, группе И В OCHOBHOM, магнезиальность (X_{Mg}) в пределах 0.473-0.513 (рисунок 3.19). Амфибол характеризуется повышенным содержанием TiO_2 (2.19–2.71 мас. %) и K_2O (1.92–2.26 мас.%), содержание Са в среднем 11.76 мас.%.

Рисунок 3.19 – Составы амфиболов из двупироксенового плагиогнейса (проба 169-1) (Leake et al., 1997)

Спектры распределения REE в амфиболе имеют выпуклую форму в области легких и средних REE (рисунок 3.20). Характер распределения дифференцированный (La/Yb)_N = 1.34) с уменьшением содержаний от La к Lu. Суммарное содержание REE 1430 ppm, в среднем (Приложение A, таблица A9). Величина Eu-аномалии имеет сильно выраженный отрицательный характер (Eu/Eu*=0.23). Суммарное содержание LREE на порядок выше HREE (LREE = 1235 ppm, в среднем). В точках измерений наблюдается повышенное содержание Ti и варьирует в пределах от

16515 ppm до 17 682 ppm, содержания V = 639 ppm (в среднем), Cr = 150 ppm (в среднем).

Рисунок 3.20 – Спектры распределения REE в ортопироксенах (а), клинопироксенах (б) и амфиболах (в) из двупироксенового плагиогнейса (обр. 169-1)

Гранат-ортопироксеновый плагиокристаллосланец (обр. 174) сложен Pl (53%), Amp (32%), Opx (10%), Grt (4%). Плагиоклаз, представленный гипидиоморфными зернами до 0.5 мм в диаметре, по составу отвечает андезину с максимальным содержанием анортитового компонента 43% (рисунок 3.21). Все зерна калиевого полевого шпата, приуроченные к границам более мелких (до 0.2 мм) зерен плагиоклаза, содержат около 5% альбитового компонента (Сергеева и др., 2018).

Рисунок 3.21 – Взаимоотношения минералов в гранат-ортопироксеновом плагиокристаллосланце (обр. 174)

Ортопироксен представлен идиоморфными зернами размером до 0.5 мм и по составу соответствует смеси ферросилитового и энстатитового соотношениях с миналов В равных незначительным присутствием компонента. Содержание Al волластонитового В ортопироксене не превышает 0.1 ф.е. Клинопироксен с магнезиальностью не более 0.6 практически всегда ассоциирует с ортопироксеном и содержит не более 6% жадеитового компонента.

Гранат в породе представлен мономинеральным ксеноморфным агрегатом, вероятно, заполняющим ослабленную зону (трещину) мощностью до 1 мм, а также единичными зернами, развивающимися в плагиоклазовой матрице совместно с амфиболом. Гранат характеризуется пироп-гроссуляральмандиновым составом с Alm компонентой около 60% и с повышенным содержанием Sps-компонента – 4%, что свидетельствует о его формировании на ретроградной стадии метаморфизма (рисунок 3.22). В гранате Grs-(17–19%) преобладает над Py (14 - 17%).К компонент сожалению, зональность в гранатах из пород высокометаморфизованных комплексов чаще всего «стирается» в процессе объемной диффузии (Blackburn, 1969; Anderson, Buckley, 1973 и др.).

Для гранатов из высокометаморфических комплексов, как правило, характерен обратный тип зональности. Химическая зональность данного типа обнаруживает падение содержания MnO и ростом MgO от переферии к центру (Авченко, 1982). Эту зональность многие авторы считают ретроградной И связывают ее образование с наложением условий амфиболитовой фации на породы, ранее метаморфизованные в условиях гранулитовой фации.

Рисунок 3.22 – Диаграмма Alm+Sps-Prp-Grs минального состава гранатов из гранат-ортопироксенового плагиокристаллосланца (обр. 174)

Амфибол, замещающий пироксены, характеризуется магнезиальностью около 0.5, относится к кальциевой группе и может быть представлен как смесь 70% паргаситового, 20% феррочермакитового и 10% глаукофанового компонентов. Амфиболы данного состава типичны для амфиболитовой фации метаморфизма, чему не противоречит его парагенезис с гранатомальмандином (Сергеева и др., 2018).

Гранаты из плагиокристаллосланца демонстрируют типичное обогащение HREE (от 79.6 до 155 ppm) (Приложение А, таблица А7). Спектры распределения REE дифференцированы с резким увеличением содержаний от La к Lu и с присутствием Еu-минимума (Eu/Eu* = 0.63) (рисунок 3.23а). В гранатах отсутствует зональность по легким и средним редким землям, но при этом, наблюдается повышение концентраций HREE от центра к краю, что указывает на уменьшение степени метаморфизма (Другова и др., 2001).

В ортопироксенах спектры распределения REE слабо дифференцированны (рисунок 3.23б). Суммарное содержание REE не превышает 1 ppm, для них характерна отрицательная Eu-аномалия или иногда отсутствует (Eu/Eu* = 0.51–1.01).

Амфибол представлен, в основном, паргаситом и ферро-паргаситом со значениями X_{Mg} от 0.5 до 0.6 (Сергеева и др., 2018). Спектры распределения REE имеют сильно дифференцированный характер (La/Yb)_N = 5.19–7.59), с уменьшением содержания от La к Lu (рисунок 3.23в). Для амфибола характерна умеренная отрицательная Eu-аномалия (Eu/Eu* = 0.57–0.71). Амфибол имеет повышенные содержания Ti (17997–20704 ppm), V (495–700 ppm), Zr (127–172 ppm) (Приложение А, таблица А9). Суммарное содержание REE составляет 334–371 ppm с преобладанием LREE (291–327 ppm).

плагиокристаллосланца (обр. 174)

Гранат-пироксеновый амфиболит (обр. 166)

встречается в виде средне- и Ортопироксен крупнозернистых кристаллов размером до 0.5-1 см (рисунок 3.24) и представлен как смесь ферросилитового (37-39%) и энстатитового (60-63%) компонентов с преобладанием энстатитового и с присутствием незначительного содержания волластанита (>1 %) (рисунок 3.25). Спектры распределения REE в ортопироксене недифференцированны (La/Yb)_N = 0.26-0.35). Суммарное содержание REE низкое (0.18 ppm, среднем). В Ортопироксен Ti (204–220 ppm), Cr (156– характеризуется средними содержаниями 169 ppm), V (75–85 ppm).

Рисунок 3.24 – Взаимоотношения минералов в гранат-ортопироксеновом амфиболите (обр. 166)

Рисунок 3.25 – Диаграмма (Morimoto et al., 1988) для ортопироксенов из

гранат-пироксенового амфиболита (обр. 166)

Гранат из гранат-пироксенового амфиболита (обр. 166) представлен гипидиморфными среднезернистыми кристаллами размером до 0.5 мм, встречаются отдельные крупные кристаллы до 1 см (рисунок 3.24). Гранат характеризуется гроссуляр-пироп-альмандиновым составом с переменным преобладанием Prp (24–30 %) и Alm (50–56%) компонентами, содержание Sps-компонента – 2-3% (рисунок 3.26; Приложение А, таблица А4). В гранате Prp (24–30%) преобладает над Grs-компонент (16–19%). В гранатах не наблюдаются вариации состава в пределах зернах, зональность отсутствует. Гранаты характеризуются умеренной желизистостью ($X_{Fe} \sim 0.532$), магнезиальность (X_{Mg}) в среднем 0.334.

Рисунок 3.26 – Диаграмма Alm+Sps-Prp-Grs минального состава гранатов из гранат-ортопироксенового амфиболита (обр. 166)

Гранаты характеризуются дифференцированными спектрами распределения с увеличением содержаний от La к Lu, положительной Euаномалией (Eu/Eu* = 1.41–1.65). Суммарное содержание REE составляет 36.6–49 ppm с преобладанием HREE (35.1–46.7 ppm). В гранате содержания Ti (108–183 ppm), Y (72.7–91.3 ppm) (Приложение A, таблица A7).

В гранат-пироксеновых амфиболитах (обр. 166) присутствует амфибол, соответствующий по классификации (Leake et al., 1997) магнезиогастингситу

(рисунок 3.27). Расположение фигуративных точек амфиболов в поле развития паргасит-магнезиогастингсит соответствует породам, метаморфизованным в условиях гранулитовой фации. Для амфиболов характерно невысокое содержание Ti (0.13–0.17ф.е.), Mg (2.461–2.622 ф.е., $X_{Mg} = 0.409$ –0.440), обогащенность CaO (12.46–12.82 мас.%) и MgO (11.54–12.09 мас.%).

Рисунок 3.27 – Составы амфиболов из гранат-пироксенового амфиболита (проба 166) (Leake et al., 1997)

Спектры распределения REE в амфиболе демонстрируют уменьшение содержаний от La к Lu (La/Yb)_N = 23.7–76.1) (рисунок 3.28), присутствует положительная Eu-аномалия (Eu/Eu* = 1.24-1.49), суммарное содержание REE 156 ppm (в среднем) Амфибол характеризуется содержаниями Ti (8347–8749 ppm), V (487–503 ppm), Zr (83–100 ppm) (Приложение A, таблица A9).

Рисунок 3.28 – Распределение REE в ортопироксенах (а), гранатах (б) и амфиболах (в) из гранат-ортопироксенового амфибоита (обр. 166)

3.4 Р-Т параметры гранулитового метаморфизма

Интерес к изучению гранулитовых комплексов возник с появлением минералогической термобарометрии и развития методик расчета Р-Т трендов (Перчук, 1968, 1973, 1976). Р-Т эволюция метаморфических пород представляет собой запись сопряженного изменения температуры и давления в ходе геологической истории их преобразования.

Многочисленные исследования Р-Т эволюции гранулитовых комплексов показало, что для них характерны только ретроградные Р-Т тренды. Более ранняя термодинамическая и структурная история гранулитов в большинстве случаев полностью затерта в ходе высокотемпературной перекристаллизации на пике метаморфизма.

Наиболее подходящей для точного установления Р-Т параметров гранулитового метаморфизма породой (из изученных в данной работе) является амфиболизированный гранат-ортопироксеновый плагиокристаллосланец (обр. 174).

Определения Р-Т параметров гранулитового метаморфизма выполнялись с помощью программного комплекса TWQ (глава 2) Р. Бермана, Т. Брауна (Berman, 1991).

Исследованный обр. 174 благоприятен для определения параметров метаморфических преобразований, так как содержит гранат – фазу, которая существенно расширяет количество термометрических реакций. Полученные для позднего парагенезиса Amp-Grt-Pl-Qz параметры температуры 695 ± 15°С и давления 6 ± 1 кбар (3 независимых реакции) соответствуют граничной области амфиболитовый и гранулитовой фаций (Oh, Liou, 1998), и, как видно, характеризуются отсутствием равновесия сосуществующих 3.29). Это обусловлено амфибол, минералов (рисунок тем, что барозависимые (например, определяющий реакции 3Ab+2Grs+Prp+3Ts=3Prg+6bQtz+6An И 3Ab+2Grs+Prp+4fTs=3fPrg+Ts+6bQtz+6An) определяющий гранат, И 3Prg+4Alm=4Prp+3fPrg) термометрические реакции (например,

формировались не синхронно, а с некоторым временным промежутком. Кроме того, существенную неопределенность вносит неточность термодинамических параметров для конечных амфиболов. членов Необходимо отметить, что активность воды в системе составляла не менее 0.8, что вполне соответствует наблюдаемым соотношениям таких фаз, как ортопироксен и амфибол (Сергеева и др., 2018).

Рисунок 3.29 – Диаграмма TWQ (парагенезис Amp-Grt-Pl-Qz) для амфиболизированного гранат-ортопироксенового плагиокристаллосланца

(обр. 174)

Для проверки полученных Р-Т значений были выполнены расчеты методом псевдосекций и изоплет в программе Theriak-Domino с базой JUN92d.bs, являющейся аналогом согласованной базы термодинамических используемой TWO (Wei, 2004). Поскольку данных, В В полиметаморфических комплексах часто встречается локальная неоднородность по положению и составу минералов наиболее подходящим методом для оценки валового состава породы с равновесными минеральными парагенезисами является его расчет по реальным соотношениям минералов и их составам. Для рассчитанного таким образом состава породы были построены изоплеты конечных членов составов граната (Alm, Py, Grs),

плагиоклаза (An), магнезиальности и содержания Al в ортопироксене (ф.е.). Далее, сравнивая расчетные составы с измеренными, была построена довольно компактная область, показанная черным цветом на рисунке 3.6, где составы минералов совпадают. Очевидно, что параметры температуры $720\pm10^{\circ}$ С и давления 7.0 ± 0.2 кбар практически совпадают с рассчитанными ранее методом TWQ (рисунок 3.30).

Рисунок 3.30 – Изоплеты конечных членов составов граната (Alm, Py), плагиоклаза (An), магнезиальности и содержания Al в ортопироксене (ф.е.)

Более проблемной являлась оценка параметров ранней, высокотемпературной ветви метаморфизма, поскольку в данном образце к минералам данного этапа можно отнести только наиболее основной плагиоклаз и ортопироксен с максимальной глиноземистостью. Используя принцип эффективного состава породы (De Capitani, Petrakakis, 2010) из валового состава, соответствующего ретроградной стадии, были «удалены» гранат И амфибол, а затем рассчитаны изоплеты для анортитовой компоненты в плагиоклазе, чермакитового компонента и магнезиальности – в ортопироксене (рисунок 3.31). Методом, описанным выше, была построена область, отвечающая максимальным Р-Т параметрам (пунктирный эллипс на рисунке 3.32) с температурой 775±35°С и давлением 7.5 ± 0.7 кбар. Эта приближенная оценка свидетельствует о том, что протолит на ранних метаморфизм Область стадиях испытал гранулитовой фации. реальных минеральных парагенезисов, рассчитанная сосуществования дополнительно (голубая заливка на рисунке 3.32), свидетельствует о возможности формирования наблюдаемых парагенезисов в достаточно широком интервале температур, но ограниченном по давлению (Сергеева и др., 2018).

Рисунок 3.31 – Изоплеты конечных членов составов плагиоклаза (An), магнезиальности и содержания Al в ортопироксене (ф.е.)

Рисунок 3.32 – Поле устойчивости минеральных парагенезисов обр. 174 (голубая заливка), рассчитанных в программе Theriak-Domino (Wei, 2004) для системы MnNCMFATSH при aH₂O=0.8. Эллипсами показаны область минимальных P-T параметров (~720°C и 7 кбар) для ассоциации Grt+Opx+Pl+Amp (черная заливка) и максимальных P-T параметров (~775°C и 7.5 кбар) для ассоциации Opx+Pl (жирный пунктир). Граница амфиболитовой и гранулитовой фаций показаны по (Oh, Liou, 1998).

Можно предположить следующую последовательность метаморфических преобразований породы: высокотермальный метаморфизм гранулитовой фации (T≤810°C) и последующее субизобарическое (около 7 кбар) остывание до 700°C с повышением активности воды и формированием Grt-Amph парагенезиса, отвечающего области перехода из гранулитовой в амфиболитовую фацию (Oh, Liou, 1998). Субизобарическое остывание, как правило, широко проявлено во внешних частях гранулитовых комплексов, что является следствием оттока тепла в боковые породы при подъеме горячих масс гранулитов (Геря, 1999).

Таким образом, установлено, что в основных гранулитах далдынской серии проявлен метаморфизм амфиболитовой фации (700°C и 6 кбар) с возрастом 1920 млн лет, наложенный на палеопротерозойский гранулитовый метаморфизм (775°C и 7.5 кбар).

3.5 Выводы по главе 3

Гранулиты далдынской серии Анабарского щита на основании петрографических особенностей и по составу главных и редких элементов разделяются на орто-И парапороды. Ортопороды представлены мезократовыми кристаллосланцами, плагиогнейсами И гнейсами, И метаультрамафитами. В составе парапород выделяются метаосадочные породы, представленные кварцитами. Геохимические особенности пород далдынской серии указывают на их сходство с вулканитами. Гранулиты вероятнее всего были сформированы как вулканогенная ассоциация в результате преимущественно известково-щелочного вулканизма.

Термабарометрическое исследование пород установило два этапа палеопротерозойского метаморфизма. Для пика гранулитового метаморфизма с возрастом 1997 млн лет определены параметры температуры 775°С и давления 7.5 кбар. Полученные параметры температуры 720°С и 6 давления кбар отвечают времени проявления регрессивного амфиболитового метаморфизма с возрастом 1920 млн лет.

ГЛАВА 4 ИЗОТОПНО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА

4.1 U-Pb изотопная система

В U-Pb геохронологии наиболее часто используемым акцессорным минералом является циркон. Минерал обладает как механической, так и химической устойчивостью в различных геологических процессах, присутствует практически во всех типах горных пород (Belousova et al., 2002), имеет высокую температуру закрытия U-Pb системы (Lee et al., 1997).

Имеющиеся данные предшественников по возрасту пород далдынской серии хорошо согласуются между собой. Раннее О.М. Розеном с соавторами (1988) для циркона магматического происхождения из пород далдынской серии классическим методом был получен возраст 2.95 ± 0.02 млрд лет. Для пробы на ионном микрозонде был определен ИЗ той же циркона магматический возраст эндербитов как 3.16 ± 0.03 млрд лет (Bibikova, Williams, 1990). Ранний этап архейского гранулитового метаморфизма с конкордантным возрастом 2.68 ± 0.02 млрд лет был установлен по оболочкам циркона ИЗ мезократового гиперстенового плагиогнейса, палеопротерозойский этап метаморфизма для пород далдынской серии был проявлен в интервале 1.9–1.8 млрд лет (Bibikova et al., 1986b; Розен и др., 1988).

U-Pb методом были продатированы цирконы из пород далдынской серии, опробованные в правом борту р. Бол. Куонамка, в районе устья р. Далдын.

4.1.1 Мезократовые кристаллосланцы

Образец 508. U-Pb (SHRIMP-II, ЦИИ ВСЕГЕИ) методом были продатированы цирконы из биотит-гиперстеновых кристаллосланцев. В биотит-гиперстеновом кристаллосланце зерна циркона, В основном, представлены прозрачными И полупрозрачными призматическими И субидиоморфными кристаллами желтоватого цвета, реже встречаются кристаллы округлой формы. Размеры кристаллов варьируют от 180 до 350 μm.

Цирконы в катодолюминесцентном изображении (CL) представлены двумя типами (рисунок 4.1): 1) призматические кристаллы с сглаженными вершинами и ребрами; 2) кристаллы округлой формы. В цирконах установлены ядра с коэффициентом удлинения (K_y) 1.1–2.1. Встречаются зерна с тонкими белыми каймами и с темными внешними оболочками (Сергеева и др., 2016).

Большинство измеренных зерен циркона принадлежат дискордии с верхним пересечением 3017 ± 32 млн. лет и нижним -1951 ± 34 млн. лет 4.2). Для четырех цирконов ранней генерации (рисунок получен конкордантный возраст 3012 ± 15 млн лет. Концентрации в ядрах древних цирконов U (242-342 ppm) и Th (110-218 ppm), величина Th/U (0.46-0.77). Среди проанализированного циркона присутствуют зерна с тонкими белыми каймами и с темными внешними оболочками, по которым получен конкордантный возраст 1971 ± 12 млн. лет (семь измерений, Гусев и др., 2012). Циркон архейского возраста характеризуется невысоким содержанием U и Th, величина Th/U отношения в среднем 0.68. Каймы циркона палеопротерозойского возраста характеризуются повышенным содержанием U и пониженным – Th, низким значением Th/U отношения (в среднем 0.18).

Рисунок 4.1 – Катодолюминесцентное изображение (CL) циркона из биотитгиперстенового кристаллосланца (обр. 508)

Рисунок 4.2 – Диаграмма с конкордией для циркона из биотитгиперстенового кристаллосланца (обр. 508). Номера точек анализа соответствуют рисунку 4.1 и таблице Б.1

Образец 169-1. Циркон из двупироксенового плагиогнейса (обр. 169-1) представлен слегка окатанными, удлиненными идиоморфными кристаллами, серыми и темными в CL (рисунок 4.3). Для некоторых зерен циркона наблюдается наличие тонких белых и черных кайм. В CL зональность в цирконе, в основном, затушеванная осцилляционная или мозаичная. Циркон имеет повышенную величину Th/U отношения, и она варьирует в широких пределах от 0.81 до 1.90 (таблица Б.2). Для циркона характерны низкие содержания Th (в среднем ~ 103 ppm, кроме 12.1) и U (в среднем ~ 91 ppm, кроме 9.1 и 12.1) (Сергеева и др., 2019).

Из 20 проанализированных зерен циркона большая часть (16)измерений) образует на графике с конкордией (рисунок 4.4) практически непрерывный интервал с ²⁰⁷Pb/²⁰⁶Pb возрастом от 2840 до 3066 млн лет. В этой группе возможно рассчитать кластера два co значениями конкордантного возраста 2991 ± 11 и 2920 ± 11 млн лет, соответственно. По морфологии зерен и окраске их в CL какие-либо существенные различия не наблюдаются. Поэтому возможно предположить, что более молодой

67

конкордантный кластер циркона образован в результате потери свинца («сползания по конкордии») цирконом возраста около 2990 млн лет.

двупироксенового плагиогнейса (обр. 169-1)

Образец 169. В гиперстеновых плагиогнейсах (обр. 169) циркон, в основном, представлен призматическими и длиннопризматическими кристаллами (150–500 мкм) с коэффициентом удлинения (К_у) 1.1–5.0, реже встречаются округлые зерна. Циркон в CL изображении состоит из темных ядер с темными и белыми оболочками (рисунок 4.5).

Рисунок 4.5 – Катодолюминесцентное изображение (CL) циркона из гиперстеновых гранулитов (обр. 169)

В результате локального U-Pb датирования 22 зерен можно выделить три группы циркона различного возраста. Для трех ядер получен наиболее древний конкордантный возраст 2942 ± 14 млн лет. Циркон характеризуется средними содержаниями Hf 9490-11 000 ppm, содержание Y 390-674 ppm. Полученный конкордантный возраст подтверждается также верхним пересечением дискордии по пяти зернам с возрастом 2942 ± 12 млн лет (рисунок 4.6). По 4 точкам (1.2, 2.2, 7.2, 13.1) в темных и серых каймах в CL получен конкордантный возраст 2683 ± 20 млн лет. Содержание U в этих каймах варьирует в широком интервале от 10 до 910 ppm, Th от 1 до 185 ppm, величина Th/U отношения в среднем 0.22 (таблица Б.3). Полученный возраст, скорее всего, отражает время раннего этапа архейского гранулитового метаморфизма и подтверждается верхним пересечением дискордии с возрастом 2652 ± 72 млн лет. Среди проанализированного циркона также присутствуют широкие темно-серые и серые каймы в CL с конкорадантым возраст 1990 ± 12 млн лет (4.2, 5.1, 6.2, 7.3, 8.1, 9.2). Каймы характеризуются низким содержанием U и Th, но высокимTh/U отношением в интервале от 0.95 до 1.40.

69

Рисунок 4.6 – Диаграмма с конкордией для циркона из гиперстенового гранулита (обр. 169)

Образец 166. В гранат-пироксеновых амфиболитах (обр. 166) циркон представлен бесцветными прозрачными и полупрозрачными округлыми зернами, в катодолюминесцентном (CL) изображении имеет гетерогенное строение (темные ядра с темными и белыми оболочками). В среднем размер зерен составляет 100×200 мкм (рисунок 4.7). Зональность в цирконе осцилляционная, иногда она мозаичная или отсутствует (рисунок 4.7). Часть зерен циркона имеет каймы мощностью около 20 мкм, выделяющиеся яркобелым свечением в CL.

Рисунок 4.7 – Катодолюминесцентное изображение (CL) циркона из гранатортопироксеновых амфиболитов (обр. 166)

Было продатировано 17 зерен циркона (21 точка, рисунок 4.8). Для 11 получена дискордия точек циркона была С верхним пересечением 2907 ± 18 млн. лет, подтвержденная конкордантным значением возраста 2890 ± 26 млн. лет по 4 циркона. Цирконы точкам этой группы характеризуются Th/U отношением со средним значением около 1.0 (таблица Б.4).

Для светлых кайм в CL (три точки) получена дискордия с верхним пересечением 2050 ± 41 млн. лет.

Рисунок 4.8 – Диаграмма с конкордией для циркона из гранатортопироксеновых амфиболитоы (обр. 166). Номера точек анализа соответствуют рисунку 4.7 и таблице Б.4

4.1.2 Плагиогнейсы

Образец 167. Циркон представлен полупрозрачными призматическими субидиоморфными и прозрачными бесцветными округлыми зёрнами. Размер зерен варьирует от 70 до 220 мкм, коэффициент удлинения 1–4.2.

В СL цирконы разнообразны по внутреннему строению и интенсивности свечения. В большинстве зёрен наблюдается гетерогенное строение (рисунок 4.9). Преобладают трехфазные цирконы: центральная часть представлена тонкозональными ядрами, промежуточная светлая оболочка со следами секториальной зональности и тонкая краевая часть со

слабым свечением. Такое строение характерно для зёрен 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 22, 23. В центральных частях ядер преобладает тонкая зональность, тогда как в краевых - наблюдается грубая зональность, либо отсутствие зональности. Так же присутствуют двухфазные цирконы с секториальным ядром и темной оболочкой 4.1, 8.1, 1.1, 2.1. Цирконы 19 и 23 полностью темные слабо зональные.

Морфологически выделяются две разновидности циркона. Первая группа представляет собой удлиненно-призматические ритмичнозональные кристаллы с тонкими белыми каймами. Вторая группа – бесцветные изометричные цирконы многогранного облика.

По 30 измеренным точкам можно выделить две возрастные группы цирконов можно выделить две возрастные группы. Первая группа представлена темными ритмичнозональными зернами. Для них характерны умеренные до повышенных концентрации U (398–2263 ppm), низкие до повышенных концентрации Th (18–1025 ppm). Величина Th/U отношения 0.03–0.06.

Рисунок 4.9 – Катодолюминесцентное изображение (CL) циркона из лейкократовых плагиогнейсов (обр. 167)
Для второй группы цирконов характерны субизометричные светлые зерна с низкими концентрациями U (42–104 ppm) и Th (57–152 ppm). Величина Th/U отношения варьирует от 1.19 до 2.07.

В результате U-Pb датирования 8 зерен цирконов из первой группы получен конкордантный возраст 2985 ± 9.3 млн лет, совпадающий верхним пересечением дискордии 2990 ± 15 млн лет (рисунок 4.10). Для второй популяции цирконов получен конкордантный возраст 1928 ± 18 млн лет.

Рисунок 4.10 – Диаграмма с конкордией для циркона из лейкократовых плагиогнейсов (обр. 167). Номера точек анализа соответствуют рисунку 4.9

4.1.3 Мафитовые породы

Образец 171. Циркон в плагиоклазовых вебстеритах представлен полигенными зернами с темными в CL ядрами с неоднородным, иногда концентрически зональным строением, темно-серыми до черных оторочками и тонкими светлыми до белых оболочками (рисунок 4.11). Ядра по 7 измерениям характеризуются низкими концентрациями U (~ 90 ppm) и низкими концентрациями Th (~ 90 ppm), величина Th/U = 1.05. Циркон в краевых частях характеризуется умеренными коцентрациями U (448 ppm) и Th (305 ppm), величина Th/U 0.75. Белые оболочки не изучены из-за малой (2–10 мкм) мощности. В результате датирования были получены два

дискордантных кластера с возрастами 2899 ± 26 млн лет и 2012 ± 8 млн лет (рисунок 4.12а).

Рисунок 4.11 – Катодолюминесцентное изображение (CL) циркона из плагиоклазового вебстерита (обр. 171)

Фигуративные точки цирконов плагиоклазового вебстерита (обр. 171) архейского возраста (1.1, 2.1, 3.1, 4.1, 9.1, 10.1, 11.1) попадают в поле магматического циркона (рисунок 4.12б). Точки оболочек (5.1, 6.1, 7.1, 8.1) с возрастом 1971 ± 12 млн лет тяготеют к полю «гидротермального» циркона.

Рисунок 4.12 –диаграмма с конкордией для циркона из плагиоклазовых вебстеритов (обр. 171). Номера точек анализа соответствуют рисунку 4.11 и таблице Б.5 (а) и соотношение La и Sm_N/La_N (б) Поля составов приведены по (Hoskin, 2005)

4.1.4 Кварциты

Образец 820. Циркон из кварцита в катодолюминесценции (CL) темносерого до черного цвета, представлен, в основном, призматическими и короткопризматическими кристаллами (длина 200–500 мкм), коэффициент удлинения (K_y) 1.6–3.9. Кристаллы слабо окатаны, в ядрах наблюдаются реликты тонкой осцилляционной и секториальной зональности, которая часто затушевана или «размыта» (рисунок 4.13а) (Сергеева и др., 2020). В кварцитах присутствуют зерна с тонкими темно-серыми каймами. Измерения возраста производилось, в основном, по ядерным частям зерен.

В результате U-Pb датирования ядер циркона получен широкий диапазон значений возраста, расположенный на линии конкордии, в интервале 3740–3450 млн лет. По измеренным точкам можно выделить две возрастные группы. К первой группе относится циркон с возрастом 3740–3600 млн лет ко второй – 3510–3450 млн лет (рисунок 4.13г). Наиболее древнее зерно (точки 3.1 и 3.2) с возрастом 3740–3733 млн лет, имеет спектр распределения REE аналогичный магматическому циркону и на диаграммах (рисунок 4.13а) относится к неизменному магматическому типу. Популяция из 5 зерен с возрастом 3634–3600 млн лет является субконкордантной (дискордантность 2–5%) и «растягивается» вдоль линии конкордии, вероятно, в связи с потерей радиогенного свинца (Сергеева и др., 2020).

Также присутствует циркон со значениями возраста 3554 и 3535 млн лет (точки 5.1 и 13.1, таблица Б.6). Зерно 5.1 имеет низкую величину Th/U отношения (Th/U = 0.06), типичную для метаморфического циркона.

Во второй значительной популяции с возрастом 3510–3452 млн лет три зерна циркона (точки 1.1, 9.1, 11.1) имеют распределение REE как у неизмененного магматического циркона, причем зерно 1.1 с ритмичной зональностью имеет низкое содержание Li 0.02 ppm (рисунок 4.136, таблица Б.6). Низкие концентрации Li (<0.04 ppm) характерны для мантийных цирконов и цирконов океанической коры, тогда как в цирконах континентальной коры содержания Li на несколько порядков выше (Ushikubo et al., 2008). Остальные 4 зерна в этом кластере обогащены LREE.

Образец 831-1. В кварцитах обр. 831-1 циркон темно-серого цвета в CL, представлен слегка окатанными, призматическими кристаллами длиной 200–300 мкм с коэффициентом удлинения (K_y) 1.6–3.6 с тонкими серыми оболочками (рисунок 4.13в) (Сергеева и др., 2020). Зональность в ядрах, как правило, осциляционная, в некоторых зернах она затушевана или размыта. В результате U-Pb датирования для 12 точек (кроме 7.1, 8.1, 12.2, 15.1) получена дискордия с возрастом верхнего пересечения 3487 ± 11 млн лет (рисунок 4.13г). Циркон имеет среднюю величину Th/U отношения (~ 0.53) (таблица Б.7), что типично для циркона магматического генезиса (Hoskin, Schallteger, 2003), характеризуется пониженным содержанием U (83–247 ppm) и Th (42–116 ppm).

Рисунок 4.13 – CL-изображения с положением точек анализа и значением ²⁰⁷Pb/²⁰⁶Pb возраста (а, в) и диаграммы с конкордией (б, г) для циркона из кварцитов обр. 820 (а, б) и обр. 831-1 (в, г)

Результаты определения возраста циркона из кварцитов обр. 831-1 попадают в компактную область значений, причем по 12 точкам может быть построена линия дискордии с верхним пересечением 3487 ± 11 млн лет (рисунок 4.13г). В этой же группе, обогащенной LREE, находится оболочка циркона (точка 12.2) с возрастом 2778 ± 16 млн лет и низким Th/U отношением 0.05, что дает основание считать циркон метаморфическим. В этом цирконе отсутствуют положительная Се-аномалия и отрицательная Eu-аномалия (Eu/Eu* = 1.03) (Сергеева и др., 2020).

Образец 523. Циркон ИЗ кварцитов коричневого цвета, субидиоморфные овальные зерна прозрачные полупрозрачные, И трещиноватые. Длина зерен 100-200 мкм с K_v от 1-2.5. В CL окраска преимущественно темно-серая или черная, метаморфические оболочки маломощные или слабопроявленные. Зональность в кристаллах представлена в основном сочетанием тонко- и грубополосчатой редко с элементами секториальности (точка 12.1). В основном зональность срезается краями зерен, реже она субпараллельна им (6.1, 12.1, 13.1 – 2326 млн лет, 19.1).

Из кварцитов обр. 523 продатировано 23 ядра зерен циркона (рисунок 4.14). Наиболее древние в верхней части палеоархейские дискордантные 4 анализа (точки с анализами 2.1 5.1 7.1 20.1) с возрастом от 3347 ± 7 до 3166 ± 8 млн лет (D = 3–7). Два из них с хорошо сохранившейся ритмичной зональностью (зерна с точками 2.1 и 7.1) (Сергеева и др., 2020, Gusev et al., 2020).

В популяции из 6 зерен с возрастом 2981–2858 млн лет (рисунок 4.14) в двух зернах с точками анализов 17.1 и 21.1 ритмичная зональность подобная магматической. Остальные зерна имеют пятнистую окраску в СL. Дискордия, построенная по 4 анализам из этой популяции, имеет верхнее пересечение 2870 ± 21 млн лет (СКВО 1.14).

В группе циркона с диапазоном возрастов 2769 – 2609 млн лет (рисунок 4.14) по 7 анализам получено среднее значение возраста 2695 ± 25 млн лет (СКВО = 3.4). Отмечается ритмичная зональность в зернах с

анализами 8.1, 9.1, 15.1, 16.1. Начиная со значения 2680 млн лет при уменьшении возраста увеличивается содержание (ppm): Y 1231–1407 и HREE 826–1016.

Циркон с минимальным возрастом 2535–2326 млн лет имеет темную окраску в CL (рисунок 4.14). Ритмичная зональность различима только в зерне с анализом 3.1 (возраст 2535 ± 13 млн лет) (Сергеева и др., 2020, Gusev et al., 2020).

Рисунок 4.14 – CL-изображения с положением точек анализа и значением ²⁰⁷Pb/²⁰⁶Pb возраста, диаграмма с конкордией для циркона из кварцитов обр.

523 и гистограмма определений возраста по отношению ²⁰⁷Pb/²⁰⁶Pb

Образец 823-1. В кварцитах ядра циркона показали диапазон ²⁰⁷Pb-²⁰⁶Pb возраста 2758–2566 млн лет, меньшее значение 2214 \pm 11 млн лет в точке с анализов 2.1 связано с захватом аналитическим кратером окружающего серого в CL циркона (рисунок 4.15). В ядре зерна с анализом 8.1 с хорошо проявленной ритмичной зональностью получено наиболее древнее значение 2758 ± 11 млн лет (D = -3). Ядра характеризуются отношением Th/U = 0.38 и средними содержаниями (ppm) U 102; Th 256; Y 1404; Hf 7446; ΣREE 976. В отличие от ядер в сером цирконе оболочек наблюдается низкое содержание (средние значения в ppm): U 89; Th 86; Y 616; ΣREE 296, но более высокое отношение Th/U=1.0 и содержание Hf 9278–10182 ppm. По 8 точкам получен конкордантый возраст 2000 ± 9 млн лет с высокой конкордантностью (СКВО = 0.099), который принимается как время кристаллизации зерен серого циркона и оболочек (Сергеева и др., 2020).

Рисунок 4.15 – CL-изображения с положением точек анализа и значением ²⁰⁷Pb/²⁰⁶Pb возраста, диаграмма с конкордией для циркона из кварцитов обр. 823-1 и гистограмма определений возраста по отношению ²⁰⁷Pb/²⁰⁶Pb

Обсуждение результатов датирования. Локальное датирование U-Pb методом циркона из гранулитов далдынской серии Анабарского щита позволили установить три геологических события. Самый древний возраст магматической кристаллизации отчетливо фиксируется в ядрах из биотитгиперстеновых кристаллосланцев и определен как 3012 ± 15 млн лет. Модельный возраст протолита гранулитов ранне- и позднеархейский. Источником далдынской серии служила древняя континентальная кора. По метаморфическим каймам и оболочкам в цирконе, датированных U-Pb в ЦИИ ВСЕГЕИ, установлено, методом как МИНИМУМ, два этапа гранулитового метаморфизма. Ранний архейский этап, полученный в результате датирования гиперстеновых плагиогнейсов (проба 169) имеет возраст в пределах ~2.8–2.7 млрд. лет. Поздний этап преобразования пород в условиях гранулитового метаморфизма имеет раннепротерозойский возраст – 1,9 млрд. лет. Присутствие анатектитов, представленных лейкократовыми гиперстеновыми плагиогнейсами, с возрастом 1920 млн. лет могут интерепретироваться, как начало ретроградной стадии гранулитового метаморфизма.

Кварциты на границе бекелехской и килегирской толщ далдынской серии заметно отличаются по Nd-модельному возрасту протолита и U-Pb возрасту детритового циркона. Одна группа пород с Nd-модельным $T_{Nd}(DM-2St)$ = 3.69-3.71 млрд возрастом протолита лет содержит доминирующий детритовый циркон с возрастом 3487 ± 21 млн лет. В другой группе с $T_{Nd}(DM-2St) = 3.02$ млрд лет присутствует палеопротерозойский циркон. Кроме того, палеопротерозойский детритовый циркон установлен в парагнейсах и кварцитах с нарушенной изотопной системой, модельный возраст которых не ясен. Эти породы метасоматически изменены, и в них интенсивно проявлено новобразование циркона. Новообразованный циркон, свойственную несмотря гранулитовому на зональность. циркону, характеризуются геохимией магматического типа.

Возраст наиболее позднего детритового циркона 2250 ± 24 млн лет, возраст анатектических оболочек 2000 ± 9 млн лет. Время накопления осадочного протолита гнейсов и кварцитов находится в промежутке между этими двумя значениями возраста и условно принимается 2.1 млрд лет. Присутствие далдынской серии палеопротерозойских В составе рассматривать метаосадочных пород дает основание далдынскую гранулитовую серию в современном виде тектонически неоднородной, преобладающих архейских содержащей среди образований тела палеопротерозойских пород.

4.2 Lu-Hf изотопная система

Состав изотопов гафния в цирконе становится важным инструментом источника пород. реконструкции Циркон является устойчивым ДЛЯ гипогенных минералом во многих И гипергенных процессах. Метамиктизация и более поздние процессы изменения практически не влияния на состав изотопов Hf в цирконе. Применение оказывают результатов локального U-Pb датирования циркона (SHRIMP, SIMS) совместно с данными Lu-Hf изотопной системы (лазерная абляция) в тех же зернах, позволяет надежно установить генезис циркона и источник породы, даже в том случае, когда все другие изотопные системы значительно нарушены или даже уничтожены.

Для циркона из лейкократового плагиогнейса (обр. 167) были получены широкие вариации отрицательных значений по $\varepsilon_{\rm Hf}(T)$ от -3.0 до -17.0. Циркон с возрастом 2988 млн лет имеет более низкие значения величины $\varepsilon_{\rm Hf}(T)$ (-3.0-1.0) и начальные отношения ¹⁷⁶Hf/¹⁷⁷Hf (Hf_{*i*}) в пределах 0.280769–0.280838. Для ядер циркона протерозойского возраста характерны более низкие $\varepsilon_{\rm Hf}(T)$ (-17.0-16.8). Модельный возраст $T_{\rm Hf}(DM) = 3628-3439$ млн лет. Полученные значения существенно древнее двухстадийного модельного возраста по неодиму ($T_{\rm Nd}(DM)^2 = 2988$ млн лет) (Сергеева и др., 2017).

81

Небольшие вариации значений по $\varepsilon_{\rm Hf}(T)$ (от -3.4 до +1.0) также характерны и для биотит-гиперстеновых кристаллосланцев (обр. 508) с модельным возрастом по Hf T_{Hf}(DM)=3.7–3.5 млн лет (Сергеева и др., 2016). Начальные отношения ¹⁷⁶Hf/¹⁷⁷Hf (Hf_{*i*}) находятся в пределах 0.280746–0.280887. Точки состава циркона образуют компактную область в районе тренда эволюции однородного хондритового резервуара (CHUR, рисунок 4.16).

Широкий диапазон значений по $\varepsilon_{\rm Hf}(T)$ от -23.2 до +4.6 и модельному возрасту по Hf 4320–3024 млн лет наблюдается у гранат-пироксеновых амфиболитов (обр. 166). Для древних ядер циркона получены значения величины $\varepsilon_{\rm Hf}(T)$ от -2.5 до +4.6 с палеопротерозойским модельным возрастом $T_{\rm Hf}(DM) = 3.4$ –3.0 млрд лет. Величина Hfi в ядрах циркона определена в 0.280858–0.281058. Цирконы с возрастом ~2400 млн лет имеют отрицательные величины $\varepsilon_{Hf}(T)$ от -23.2 до -19.6 и характеризуются более древними значениями $T_{Hf}(DM) = 4.4-4.1$ млрд лет.

Для архейского циркона из метаультрамафитов (обр. 171) получен узкий интервал значений величины $\varepsilon_{Hf}(T)$ от -1.2 до 0. Циркон с возрастом (точка 12.1) 2021 млн лет характеризуется более отрицательными значениями $\varepsilon_{Hf}(T) = 11.9$ и модельным возрастом $T_{Hf}(DM) = 2.8$ млрд лет.

Данные по морфологии и внутреннему строению кристаллов цирконов в породах не позволяют сделать однозначных выводов об их генезисе. Поэтому для оценки генезиса цирконов и обоснования полученных U-Pb данных была проведена Hf-Nd изотопная систематика (Лохов и др., 2009). Данная методика, основанная на сопоставлении U-Pb возраста по циркону с величиной модельного возраста по неодиму, дает возможность правильно идентифицировать происхождение циркона. Корреляция изотопного состава гафния в цирконах и неодима в породах продемонстрирована на диаграмме (рисунок 4.17).

Магматический генезис цирконов биотит-гиперстеновых кристаллосланцев (обр. 508) гранатовых амфиболитов (обр. 166) И подтверждается их положением (в пределах ошибки) в пределах поля корреляции для магматических пород Terresrial array (TA). Цирконы метаультрамафитов далдынского комплекса (обр. 171), попадают в поле захваченных или унаследованных цирконов, следовательно, эта порода моложе 2895 млн лет. В плагиогнейсах цирконы с возрастом 2988 млн лет являются захваченными или унаследованными, а с возрастом 1947–1972 млн лет – магматическими.

Для биотит-гиперстеновых кристаллосланцев (обр. 508), гранатпироксеновых амфиболитов (обр. 166), согласованные значения модельного возраста породы по неодиму и по двухстадийной модели по гафнию, возможно получить, если принять для источника пород величину ¹⁷⁶Lu/¹⁷⁷Hf = 0.015–0.016. Таким образом, магматические породы, в настоящее время представленные биотит-гиперстеновым кристаллосланцем с возрастом магматической кристаллизации 3012 млн лет, гранат-пироксеновым амфиболитом с возрастом магматической кристаллизации 2890 млн, были выплавлены из коровых пород андезит-диоритового состава. Конкордантный возраст циркона 1928 ± 18 млн лет в лейкократовых плагиогнейсах трактуется как время кристаллизации анатектической плагиогранитной неосомы в условиях раннепротерозойского гранулитового метаморфизма (Сергеева и др., 2017).

Рисунок 4.17 – Hf-Nd систематика пород далдынской серии. 1 – биотитгиперстеновые кристаллосланцы (обр. 508, 3000 – возраст в млн лет), 2 – лейкократовые плагиогнейсы (обр. 167), 3 – гранат-пироксеновые амфиболиты (обр. 166), 4 – ультрамафиты (обр. 171). Основа диаграммы по (Лохов и др., 2009)

4.3 Изотопный состав кислорода в цирконе

В последнее время для определения генезиса минералов помимо широко распространенных изотопно-геохимических методов исследуют изотопный состав кислорода. Данные об изотопном составе кислорода в цирконе позволяют установить источник условия первичной И (Valley, кристаллизации И дальнейшей ЭВОЛЮЦИИ породы 2005). Экспериментальные исследования показали, что в кристаллической решетке циркона скорость диффузии кислорода ничтожно мала (Watson, Cherniak, 1997). Локальное изучение циркона установило различный изотопный состав

кислорода в кристаллах различного генезиса (Peck et al., 2001). Цирконы из магматических расплавов ювенильного происхождения, как правило, имеют величину $\delta^{18}O$ +5.5 ± 1‰ (по некоторым другим источникам $\delta^{18}O$ +5.3 ± 0.6‰ (Valley et al., 1998; Cavosie et al, 2009) Большие величины $\delta^{18}O$ свидетельствуют о процессах контаминации расплава осадочными или метаморфическими породами, имевшими контакт с водой (Valley, 2005).

Нами был проанализирован изотопный состав кислорода в детритовом цирконе из кварцитов обр. 820 и 831-1. Содержания δ¹⁸О в цирконе из кварцитов приведены в таблице 4.1.

4.3.1 Изотопный состав кислорода в цирконе из кварцитов

Значения δ^{18} О в цирконе из кварцитов обр. 820 варьируют в широких пределах, от 5.38 до 7.37‰ (одно значение достигает 9.82‰, рисунок 4.18). Только незначительная часть анализов показывает значения δ^{18} О 5.38–5.80‰, близкие к мантийным меткам (5.3 ± 0.3‰). Данный циркон характеризуется повышенным содержанием Hf (в среднем 11908 ppm), варьирующим количеством Y (от 652 до 1636 ppm) и характерной для магматического циркона величиной Th/U отношения (в среднем 0.35).

Фиксируемое утяжеление изотопного состава кислорода для циркона из кварцитов отражает существенный вклад древнего корового вещества (Valley et al., 2005). В цирконе с наибольшей величиной δ^{18} O (9.82 ‰) наблюдается максимальное содержание Y 3637 ppm и минимальное Hf – 8887 ppm.

Образец 831-1	delta O ¹⁸	Образец 820	delta O ¹⁸
1	5.61	1	7.06
2	7.20	2	6.40
3	5.77	3	6.77
4	6.39	4	7.06
5	6.52	5	7.37
6	6.32	6	5.48

Таблица 4.1 – Изотопный состав кислорода в цирконе из кварцитов

	1	Продолжение таблицы 4.1		
7	6.22	7	5.80	
8	7.47	8	9.82	
9	6.46	9	6.67	
10	7.02	10	6.36	
11	6.50	11	6.46	
12	6.01	12	6.29	
13	7.15	13	6.40	
14	6.99	14	7.01	
15	7.64	15	6.49	
16	6.85	16	5.38	
17	6.89	17	6.45	
18	6.12	18	5.66	
19	6.20	19	5.72	
20	6.29	20	7.03	
21	7.00	21	6.74	
22	7.67	22	6.06	
23	5.80	23	7.33	
24	6.21	24	7.18	
25	6.58	25	6.97	
26	7.33	26	6.31	
27	6.84	27	6.48	
28	5.76	28	7.18	
29	7.44	29	7.18	
30	7.17	30	7.27	

Аналогичная ситуация наблюдается и для кварцитов обр. 831-1. Только для четырех точек установлены близкие к мантийным значениям δ^{18} O: от 5.61 до 5.80‰ (рисунок 4.18). Содержание Нf варьирует в пределах от 9811 до 12694 ррт, Ү 678–1155 ррт. Так же, как и циркон из обр. 820, характеризуется величиной Th/U отношения (в среднем 0.33) типичной для циркона магматического генезиса. Для остального циркона δ^{18} O варьирует от 6.01 до 7.67‰, что также может быть объяснено значительным вкладом в магматические расплавы супракрустального компонента. Циркон характеризуется широким диапозоном содерджания Hf (8549–13293 ppm), Y (429-3915 ppm), величина Th/U отношения изменяется в пределах от 0.21 до 0.98. Расположение фигуративных точек для детритового циркона из

кварцитов далдынской серии, в целом, совпадает с архейскими цирконами из других комплексов мира (рисунок 4.18).

Рисунок 4.18 – Соотношение возраста и δ¹⁸О в цирконе из породных комлексов мира (по данным (Valley et al., 2005) и кварцитов далдынской серии Анабарского щита. Верхний предел содержаний в архейском цирконе по (Valley et al., 2005). Данные по возрасту и δ¹⁸О для циркона из кварцитов приведены в таблице 4.1

Таким образом, можно сделать вывод, что детритовый циркон из кварцитов далдынской серии с возрастом 3.5 млрд лет отражает преобладание в области сноса палеоархейских магматических пород. Изотопный состав кислорода в цирконе из кварцитов (δ^{18} O от 5.4 до 9.8‰) указывает на контаминацию материнских расплавов супракрустальным веществом.

4.4 Редкоэлементный состав циркона

Циркон – наиболее часто используемый в U-Pb геохронологии минерал, что обусловлено его как механической, так и химической устойчивостью в различных геологических процессах; способностью расти и/или перекристаллизовываться в широком диапазоне условий (от магматических до метаморфических) (Whitehouse, Platt, 2003); присутствием практически во всех типах горных пород (Belousova et al., 2002); высокой температурой закрытия U-Pb системы, значение которой превышает 900°C (Lee et al., 1997).

Данные по редкоэлементному составу циркона, получаемые С помощью локальных методов изучения вещества, широко используются в геохронологии и при геохимических и петрологических исследованиях (Hoskin, Schaltegger, 2003; Hanchar, van Westrenen, 2007; и др.). Обширный фактический материал по составу циркона из различных пород, полученный в результате комплексного изучения, позволил выделить характерные геохимические признаки циркона магматического происхождения. Как правило, циркон магматического генезиса имеет дифференцированные спектры распределения редкоземельных элементов (REE) от La к Lu, ярко выраженная положительная Се-аномалия и отрицательная Еи-аномалия, повышенная величина Th/U отношения (Hoskin, Schaltegger, 2003). Помимо этого, рядом авторов были выделены признаки, позволяющие отличать циркон из различных типов магматических пород – например, кимберлитов, гранитоидов и других типов пород. (Belousova et al., 2002; и др.).

Особенности состава циркона метаморфического генезиса, являющегося либо продуктом перекристаллизации первично-магматического циркона, либо самостоятельно образующимся в ходе метаморфизма, широко используются при интерпретации результатов U-Pb датирования (Rubatto, 2002; Hoskin, Schaltegger, 2003; Harley et al., 2007; Балашов, Скублов, 2011). Общей чертой геохимии метаморфического циркона является «сглаживание» типичных для магматического циркона характеристик: например, Th/U

отношение, как правило, не превышает 0.2; Еu- и Се-аномалия проявлены в меньшей степени (Rubatto, 2002). Среди метаморфического циркона по составу резко выделяется циркон из эклогитов, для которого были выявлены общие закономерности, заключающиеся в аномально пониженном содержании Th и величины Th/U отношения, а также пониженном содержании всего спектра REE и Y, U, P и повышенном – Hf (Сергеева и др., 2016, Скублов и др., 2012).

Биотит-гиперстеновый кристаллосланец (обр. 508)

В ядрах спектры распределения REE дифференцированы с небольшой Се-аномалией (Ce/Ce* в среднем 9) и практически отсутствует Еu-аномалия (0.75), кроме точки 8.1 (рисунок 4.19а). Внешние темные каймы в кристаллосланцах по характеру распределения REE делятся на два типа. Для типа наблюдаются дифференцированные циркона первого спектры распределения REE (отношение Lu_N/La_N варьирует от 157 до 693, Σ REE в среднем 530 ppm) с небольшой отрицательной аномалией по Eu (Eu/Eu* ~ 0.35) (рисунок 4.19б). Величина Th/U отношения низкая (в среднем 0.20). В точках второго типа получены слабо дифференцированные спектры распределения REE (Lu_N/La_N) (рисунок 4.19в). Циркон характеризуется положительной Eu-аномалией (Eu/Eu* варьирует в широких пределах от 1.16 до 3.13) и умеренной Се-аномалией (Се/Се* в среднем 2.13) (Сергеева и др., 2016). Суммарное содержание REE низкое (в пределах от 90 до 264 ppm).

Для сравнения полученных результатов были рассмотрены данные U-Pb датирования пород килегирской толщи для мезократового биотитдвупироксенового гнейса (обр. 2005/1) была получена дискордия с верхним пересечением 2677±52 млн лет и нижним пересечением 1992 ± 12 млн лет. Th/U отношение в измеренных зернах варьирует от 0.16 до 2.63. Цирконы протерозойского возраста с низкой дискордантностью высокоурановые (U=243–1406 ppm) (Ларичев и др., 2014ф).

Рисунок 4.19 – Спектры распределения REE в цирконе из биотит-гиперстенового кристаллосланца (обр. 508)

Двупироксеновые плагиогнейсы (обр. 169-1)

Наиболее древний архейский (14.1)5.1) циркон И имеет распределения REE дифференцированные спектры (рисунок 4.20a). Суммарное содержание REE сильно варьирует (от 732 до 2123 ppm), слабо проявлена Еu-аномалия (Eu/Eu* = 0.06-0.11), Th/U отношение изменяется в пределах от 0.09 до 0.86 (Приложение Б, таблица Б2). Для точки 14.1 Hf установлена высокая концентрация (12430)ppm), точка 5.1 характеризуется обогащением по Y (3478 ppm) и P (1102 ppm) (Сергеева и др., 2016).

Циркон с конкордантным возрастом 2991 ±11 млн лет характеризуется дифференцированными спектры распределения REE от La к Lu (рисунок 4.20б), но с большим диапозоном значений отношения Lu_N/La_N (от 264 до 9738). Для циркона этой группы получен отрицательная аномалия по Еи (Eu/Eu* в среднем 0.27), положительная Се-аномалия проявлена четко (Ce/Ce* в среднем 23), характерно низкое суммарное содержание REE (в интервале 208–602 ppm, кроме точек 9.1 и 12.1). Стоит отметить пониженное содержание Th и U (кроме точек 9.1 и 12.1), при этом отношение Th/U является характерным для магматических цирконов (Th/U от 0.56 до 0.95). Ti Содержание В цирконе позволяют оценить температуру его кристаллизации в интервале 698-802°С по Ті-термометру (Watson et al., 2006). Циркон (кроме точек 9.1 и 12.1) характеризуется пониженным содержанием Р (в среднем 173 ppm), Y (в среднем 555 ppm). Для всех точек получена средняя концентрация Hf (в среднем 8111 ppm) (Сергеева и др., 2019).

Для циркона с конкордантным возрастом 2920 ± 11 млн. лет спектры распределения REE (рисунок 4.20в) имеют схожий характер с цирконом, рассмотренным выше. Четко проявлена дифференциация от La к Lu (отношение Lu_N/La_N варьирует от 1230 до 6507) с проявленной Се-аномалией (Ce/Ce* = 8.9–51.6) и отрицательной аномалией по Eu (Eu/Eu* = 0.19–0.43). Содержание Th и U практически не отличается друг от друга: содержание Th

колеблется в интервале от 94 до 177 ppm, содержание U составляет в среднем 188 ppm. Th/U отношение варьирует от 0.55 до 0.89 (Приложение Б, таблица Б2). Средняя температура образования циркона этой группы определена как 730°C.

Циркон с 207 Pb/ 206 Pb возрастом в интервале 2697–2848 млн. лет также имеет дифференцированные спектры распределения (рисунок 4.20г), однако среди них четко выделяется циркон 18.1 с пологим спектром распределения HREE, низким Th/U отношением (Th/U = 0.21) и высокими содержаниями Hf (11385 ppm). Циркон с возрастом 2920 ± 11 млн. лет по содержанию элементов-примесей практически не отличается от циркона более древнего конкордантного кластера. Отличается только по содержанию Y (в среднем 1002 ppm для всех точек, кроме 4.1) (Сергеева и др., 2019).

Рисунок 4.20 – Распределение REE в цирконе из двупироксенового плагиогнейса (обр. 169-1): а – магматические ядра с возрастом > 3066 млн лет; б – циркон с конкордантным возрастом 2991 ± 11 млн лет; в – циркон с конкордантным возрастом 2920 ± 11 млн лет; г – циркон с возрастом в интервале ~ 1928–2894 млн лет

Гиперстеновые гранулиты (обр. 169)

Спектры распределения REE для ядерных частей циркона с конкордантным возрастом 2942 ± 12 млн лет дифференциированы от La к Lu (в среднем отношение Lu_N/La_N 2839) (рисунок 4.21). В архейском цирконе проявлена положительная аномалия по Ce (Ce/Ce^{*} = 6.14–19.4) и отрицательная аномалия по Eu (Eu/Eu ^{*} = 0.18–0.47). Циркон характеризуется низким содержанием Th (в среднем 67.2) (Сергеева и др., 2016). Содержание U в точке 4.1 высокое и, соответственно, циркон имеет низкую величину Th/U отношения (0.06).

Метаморфические каймы с конкордантным возрастом 2683 ± 20 млн лет, в целом, имеют схожие спектры распределения REE (рисунок 4.21б), но отношение в них Lu_N/La_N сильно варьирует от 209 до 3805. Суммарное содержание REE в среднем 199 ppm, кроме точки 2.2 (750 ppm). Для циркона характерна отрицательная Eu-аномалия (в среднем 0.21), кроме точки 7.2 (Eu/Eu* = 1.10). Величина Th/U низкая (Th/U = 0.08–0.15), типичная для циркона метаморфического генезиса. Содержание Р низкое и меняется в широких пределах от 23.8 до 382 ppm, также большой интервал в значениях наблюдается для Y (от 54.6 до 967 ppm). Каймы характеризуются повышенным содержанием Hf (10921–12924 ppm).

Для кайм с конкордантным возрастом 1990 ± 12 млн лет получены дифференцированные спектры распределения (отношение Lu_N/La_N изменяется в пределах от 2206 до 3948, кроме точки 6.2) (рисунок 4.21в). Циркон характеризуется положительной Ce- (Ce/Ce* = 4.03–19.7) и отрицательной Eu-аномалиями (Eu/Eu* в среднем 0.17). Суммарное содержание REE в интервале от 582 до 861 ppm, величина Th/U отношения варьирует в пределах от 0.67 до 1.00. Каймы циркона имеют среднее содержание P (302–440 ppm) и Hf (9379–10565 ppm), концентрация Y в пределах от 730 до 1003 ppm.

2942 ± 12 млн лет и в интервале 2784–2831 млн лет; б – каймы циркона с возрастом 2683 ± 20 млн лет; в – каймы циркона с возрастом 1990 ± 12 млн лет

Гранат-ортопироксеновые амфиболиты (обр. 166)

Для ядер циркона (рисунок 4.22а) в возрастном диапазоне около 2900 распределения REE имеют ярко МЛН лет спектры выраженный дифференцированный характер (отношение Lu_N/La_N в интервале от 692 до 3011 ррт, кроме точек 9.1, 11.1д, 12.1д, Приложение В, таблица В4), суммарное содержание REE в интервале 285–1745 ppm, за исключением точек 9.1, 11д, 12.д). Цирконы этой генерации отличаются наличием положительной Eu-аномалии (Eu/Eu* = 1.01–2.50, кроме 2.1 и 8.1), для них характерна небольшая Се-аномалия (Се/Се* ~ 6.15). Величина Th/U отношения 0.81, при этом для точек 2.1 и 12.1д наблюдается более низкое значение (Th/U = 0.12). На магматический генезис этой группы указывает пониженное содержание Hf (4887 ppm, кроме точек 2.1 и 8.1), характерное для магматического циркона из основных пород, а также положение проанализированных точек в пределах поля «земной корреляции» для первичных изотопных отношений гафния в цирконе и неодима в породе (Сергеева и др., 2017).

Для белых кайм (рисунок 4.22б) характерны выположенные спектры в области LREE (отношение Sm_N/La_N в основном около 2). Для всех зерен циркона (кроме 2.2) наблюдается четко выраженная положительная Euаномалия (Eu/Eu* ~ 4.64), Се-аномалия проявлена слабо (Ce/Ce* ~ 1.45). Величина Th/U отношения варьирует в широких пределах (от 0.14 до 0.93). Зерна 3.1 и 6.1 обогащены Ca (1241–2759 ppm) и Ti (325–1562 ppm). Содержание Hf в каймах циркона выше, чем в ядрах (в среднем 8377 ppm), содержание Y варьирует в пределах от 18.2 до 331 ppm, также для них характерна низкая концентрация Ti (в среднем 45.1 ppm кроме точек 3.1 и 6.1). Пониженное содержание Y в каймах циркона обусловлено совместной кристаллизацией с гранатом – минералом-концентратором Y (Rubatto, 2002).

Рисунок 4.22 – Распределение REE в цирконе из гранат-ортопироксенового амфиболита (обр. 166): а – центральные части циркона с возрастом ~ 2890 млн лет; б – каймы циркона более молодого возраста

Плагиоклазовые вебстериты (обр. 171)

Архейские цирконы (рисунок 4.23) с возрастом 2899 ± 26 млн лет характеризуются фракционированным магматическим спектром распределения REE (Lu/Gd)_N = 9.9–15.3) с положительной Ce (Ce/Ce* = 13.0–60.3) и отрицательной слабо выраженной Eu (Eu/Eu* = 0.20–0.25) аномалиями, а также небольшим обеднением HREE (386–854 ppm) по сравнению со спектром магматического цирконов по (Hoskin, 2005).

Циркон раннепротерозойского возраста с более обогащенными LREE и средним Th/U отношением (Th/U = 0.53), по-видимому, имеет ультраметаморфическое происхождение.

Кварциты

Образец 820. Циркон с наиболее древним значением возраста в интервале 3740–3733 млн лет (точки 3.1 и 3.2, Приложение Б, таблица Б6) характеризуется дифференцированным спектром распределения REE, типичным для циркона магматического генезиса. Группа циркона с возрастом 3634–3600 млн лет (5 точек) обогащена LREE, но из них только зерно 14.1 с возрастом около 3603 млн лет имеет спектр распределения REE

как у магматического циркона. В частности, зерно 12.1 с ритмичной зональностью наиболее обогащено REE (суммарное содержание LREE достигает 1146 ppm).

Во второй группе циркона с возрастом 3510–3452 млн лет присутсвуют три зерна (точки 1.1, 9.1, 11.1) со спектрами распределения REE как у неизмененного магматического циркона, причем зерно 1.1 с ритмичной зональностью имеет низкое содержание Li 0.02 ppm (рисунок 4.236, Приложение B, таблица B5). Низкие концентрации Li (<0.04 ppm) характерны для мантийных цирконов и цирконов океанической коры, тогда как в цирконах континентальной коры содержания Li на несколько порядков выше (Ushikubo et al., 2008). Остальные 4 зерна в этом кластере обогащены LREE.

Образец 831-1. По характеру распределения редких элементов в цирконе в кварците можно выделить две группы. К первой группе относятся зерны с типичным распределением REE для магматического циркона (отношение Lu_N/La_N варьирует от 1246 до 13787, точки 2.1, 3.1, 4.1, 6.1, 7.1, 9.1, 10.1, 11.1 в Приложении В, таблице Вб) (рисунок 4.23в). Циркон этой группы характеризуется положительной Ce-аномалией (Ce/Ce* = 9.49–56.9) и отрицательной Eu-аномалией (Eu/Eu* около 0.09), величина Th/U отношения в среднем составляет 0.36. Содержание Са варьирует в пределах от 0.55 до 26.7 ррт, Y – от 733 до 1247 ррт. Для циркона второго типа получены слабо дифференцированные спектры распределения REE (отношение (Sm/La)_N от 0 до 3) (рисунок 4.23г). Здесь наблюдается редуцированная положительная Сеаномалией (Ce/Ce* = 1.12-4.46) и отрицательная аномалия по Eu (Eu/Eu* в пределах от 0.08 до 0.46). В точках 8.1 и 12.2 Еu-аномалия отсутствет. Для циркона этого типа характерно обогащение LREE относительно HREE (LREE варьирует от 18 до 112 ppm). Циркон имеет среднюю величину Th/U отношения (Th/U ~ 0.41) (без учета точки 12.2, в которой также наблюдается аномально высокое содержание Hf 17098 ppm). В остальных зернах циркона содержание Hf варьирует в пределах от 9461 до 10899 ppm. Содержание Y

меняется в диапазоне от 446 до 1204 ppm, увеличиваясь в точке 15.1 до 2968 ppm (Сергеева и др., 2020).

Обогащение циркона второго типа в области LREE не дает оснований рассматривать это как результат метамиктности циркона, полной или частичной. Все проанализированные зерна циркона из обеих проб, за исключением одной дискордантной точки 6.1 из обр. 820 (Приложение Б, таблица Б6), конкордантны либо субконкордантны (дискордантность не превышает 5–6%). Этот факт указывает на ненарушенность U–Pb системы в цирконе. Дополнительным независимым критерием нарушенности U-Pb системы является содержание неформульного для циркона элемента Са (Geisler, Schleicher, 2000). Содержание Ca В изученном цирконе положительно коррелируется с содержанием U (r = 0.78), но демонстрирует, наряду с U, отсутствие какой-либо связи с количеством LREE (r = -0.01 и -0.05 соответственно). Среднее (медианное) содержание Са сравнительно невысокое и составляет около 10 ррт, что наряду с приемлемыми значениями дискордантности для проанализированного циркона позволяет в целом рассматривать рассчитанные значения U-Pb возраста как отражающие реальные геологические события.

Рисунок 4.23 – Распределение REE в цирконе из кварцитов обр. 820 и 831-1 обр. 820 (а и б) и обр. 831-1 (в и г). Нормировано на хондрит CI (McDonough, Sun, 1995)

Образец 523. В кварците зерна с точками 2.1 и 7.1 имеют спектры распределения REE (рисунок 4.24) наиболее близки к типовому магматическому (ΣREE 441–666 ppm), два других (5.1, 20.1 – черные в CL и более обогащены Y 2277–3214 и REE (ΣREE 1588–2136 ppm), в том числе за счет увеличения HREE (ΣHREE 1555–2096 ppm) (Приложение В, таблица В7).

В популяции из 6 зерен с возрастом 2981–2858 млн лет в двух зернах с точками анализов 17.1 и 21.1 ритмичная зональность подобная магматической. Остальные зерна имеют пятнистое свечение в CL, но на

99

диаграмме распределения REE (рисунок 4.24) также размещаются в поле магматического циркона. Дискордия, построенная по 4 анализам из этой популяции, имеет верхнее пересечение 2870 ± 21 млн лет (СКВО 1.14).

В черных зернах в CL (точки 6.1, 18.1 23.1) наблюдается повышенное содержание LREE и уменьшение Eu-минимума, свидетельствующие о росте циркона в условиях флюидонасыщенности. Начиная со значения 2680 млн лет при уменьшении возраста увеличивается содержание (ppm): Y 1231–1407 и HREE 826–1016. На диаграмме распределения REE (рисунок 4.24) преобладает циркон магматический.

Циркон с минимальным возрастом 2535–2326 млн лет слабого свечения (рисунок 4.24г). Ритмичная зональность различима только в зерне с анализом 3.1 (возраст 2535 ± 13 млн лет). Спектры распределения REE (рисунок 4.24г) наиболее приближены к магматическому типу. В цирконе с анализом 22.1 (2451 млн лет) установлены повышенные содержания Y, U, REE и уменьшение Eu-минимума.

Нормировано на хондрит CI (McDonough, Sun, 1995)

Образец 823-1. Зерно 8.1 с хорошо проявленной ритмичной REE зональностью на диаграмме распределения (рисунок 4.25a) характеризуется составом магматического циркона. Остальные ядра циркона обогащены LREE и по микроэлементному составу смещаются в сторону гидротермального циркона (рисунок 4.25а). Серые оболочки, а также самостоятельные зерна CL-серого циркона имеют профиль распределения REE и индикаторные отношения (Sm/La)_N и Ce/Ce*, соответствующие магматическому циркону (рисунок 4.25б). В отличие от ядер в сером цирконе оболочек наблюдается низкое содержание (средние значения в ppm): U 89; Th 86; Y 616; Σ REE 296, но более высокое отношение Th/U = 1.0 и содержание Hf 9278–10182 ppm (Приложение B, таблица B8). В сером цирконе, в отличие от типичного магматического, наблюдается обеднение HREE (выполаживание спайдердиаграмм на участке от Er до Lu) и низкая величина отношения (Lu/Gd)_N = 2.6 – 9.2), свидетельствующая о росте циркона в присутствии граната (минерала-концентратора Gd), т.е. в условиях гранулитовой фации метаморфизма. По 8 анализам получен конкордантый возраст 2000 ± 9 млн лет с высокой конкордантностью (СКВО = 0.099), который принимается как время кристаллизации зерен серого циркона и оболочек.

Рисунок 4.25 – Распределение REE в цирконе из кварцитов обр. 523. Нормировано на хондрит CI (McDonough, Sun, 1995)

4.5 Sm-Nd изотопная система

Изотопно-геохимические Sm-Nd исследования широко используются при изучении метаморфических пород для оценки возраста формирования континентальной коры И нижней возрастной границы накопления протолитов метаморфических комплексов (Ковач и др., 1999). В случае первично магматической природы протолита модельный Nd возраст в первом приближении отражает время начала формирования континентальной коры из мантийного источника, или время трансформации океанической коры в Изотопная Nd метаморфизованных континентальную. систематика терригенных пород позволяет оценить средний модельный возраст и возможные палеогеографические источники сноса этих пород, а также нижнюю возрастную границу осадконакопления.

4.5.1 Изотопный Sm-Nd состав пород далдынской серии

Для мезократовых кристаллосланцев (обр. 169-1, 508, 509) получены значения отношения 147 Sm/¹⁴⁴Nd в интервале от 0.0995 до 0.1099, что сравнимо со средними значениями для архейских пелитов (0.125) (McLennan, Hemming, 1992). Породы характеризуются отрицательными величинами ε_{Nd} в диапазоне от -2.4 до -1.0 и палеоархейским модельным возрастом $T_{Nd}(DM) = 3.4-3.5$ млрд лет.

4.5.2 Изотопный Sm-Nd состав минералов

В результате датирования Sm-Nd методом гранат-гиперстеновых плагиокристаллосланцев (обр. 174) с применением сернокислотного выщелачивания получена трехточечная изохрона (WR, Amp, Grt) с возрастом 1919 \pm 13 млн. лет (СКВО = 0.75, рисунок 4.26). Добавление в расчет изохронного возраста изотопных данных для ортопироксена практически не влияет на значение Sm-Nd возраста (1914 \pm 49 млн лет), но повышает величину СКВО до значения 13 (Сергеева и др., 2018).

Для амфиболитов (обр. 166) изохронное значение возраста 1982 ± 13 млн лет (WR, GrtH) совпадает в пределах ошибки с раннее полученным U-Pb возрастом протерозойского метаморфизма по циркону (Гусев и др., 2012) (рисунок 4.27). Значение возраста, полученное Sm-Nd методом для амфиболита без обработки граната, значительно древнее – 2689 ± 32 млн лет.

Рисунок 4.26 – Sm-Nd изохронная диаграмма для гранат-ортопироксенового плагиокристаллослнца (обр. 174). WR – порода (вал), Amp – амфибол, Grt (H) – гранат после процедуры сернокислотного выщелачивания

плагиокристаллослнца (обр. 166)

4.6 Общие закономерности состава циркона по редким и редкоземельным элементам

Циркон является широко распространенным минераломгеохронометром и встречается практически во всех типах горных пород. В настоящее время это один из наиболее изучаемых и используемых минералов в изотопно-геохронологических исследованиях, поскольку он является наиболее устойчивым во вторичных процессах.

Циркон обладает достаточно простой химической формулой, но, несмотря на это, состав циркона может широко варьировать. Наиболее типичной примесью для циркона является гафний, содержание которого варьируется от 0.7 до 8.3 мас. %, как правило, обогащение циркона Hf происходит при магматической дифференциации горных пород.

Состав циркона зависит главным образом от его генезиса. В магматическом цирконе наблюдается преобладание примесей Th и U (10-1000 ppm), при этом сумма остальных примесей не превышает, как правило, 1000 ppm. Метамиктный циркон наиболее подвержен процессам растворения и осаждения при взаимодействии с флюидами, что приводит к существенному обогащению циркона Ca, Al, Fe и Mn, и к потере Zr, Si и радиогенного свинца (Hoskin, Schaltegger, 2003).

Циркон один из самых надежных минералов-геохронометров. Как правило, характеризуется высокими величинами U/Pb и Th/Pb отношений, сохраняет U, Th и радиогенный Pb. Большинство катионов в цирконе имеет низкий коэффициент диффузии, благодаря чему он способен сохранять свидетельства наложенных событий и помогает установить многоэтапную историю своего образования (Cherniak, Watson, 2003).

Одним из самых мало изученных типов циркона в отношении содержания редких элементов является гранулитовый. Циркон, образованный в условиях гранулитовой фации, может рассматриваться как результат субсолидусного роста при высокой температуре, а также как

новообразованный в присутствии анатектического расплава (Schaltegger et al., 1999; Rubatto et al., 2001).

Циркон метаморфического генезиса характеризуются небольшими размерами, имеет изометричную или округлую до эллипсовидной форму с алмазным блеском, высокую прозрачность (Тугаринов, Бибикова, 1980). Кристаллы циркона обычно бесцветны или слабоокрашены в желтоваторозовые тона. Внутреннее строение циркона, сформировавшегося в условиях выскотемпературного метаморфизма, очень разнообразно. В цирконе может как отсутствовать зональность, так и присутствовать зональность с широкими зонами, первичная магматическая осцилляционная или секториальная зональности.

Для определения генезиса циркона часто используют Th/U отношение (Бибикова, 1989; Heaman et al., 1990; Belousova et al., 2002). Однако для высокометаморфизованных пород величина Th/U отношения не всегда является надежным критерием. Часто гранулитовый циркон характеризуется низким содержанием элементов-примесей, в том числе U, Th (< n×100 ppm) и Hf (< 1%) (например, Краснобаев, 1986; Бибикова, 1989; Bibikova et al., 1991, Krogh et al., 1983), что и обусловливает высокую кристалличность циркона, образованного в условиях гранулитового метаморфизма и характерную конкордантность изотопных возрастов (Бибикова и др., 1993).

Несмотря на то, что обычно метаморфический циркон имеет низкое значение Th/U отношения, рядом авторов зафиксированы значения больше 0.1–0.2, считающихся реперными – «разграничивающими» цирконы магматического и метаморфического генезиса (от 0.2 до 3.2 – Vavra et al., 1999; Bingen et al., 2001; Carson et al. 2002; Moller et al. 2003; Kelly, Harley, 2005). Исследования последных лет показали, что для магматического циркона, как правило, величина Th/U отношения редко составляет < 0.1, но при этом величина Th/U отношения для метаморфического циркона может иметь значения в широком диапазоне от <0.01 и до >10 (Yakymchuk et al., 2018). Одним из основных факторов влияния на Th/U отношение в цирконе

из метаморфических пород является присутствие в расплаве монацита с высоким содержанием Th. Высокие Th/U отношения обычно фиксируются в цирконе на ранних этапах кристаллизации и при отстуствии монацита в расплаве. Напротив, низкие отношения установлены на поздних стадиях и при кристаллизации вблизи температуры солидуса в присутствии монацита (Yakymchuk et al., 2018).

Гранулитовый циркон, часто находящийся в равновесии с анатектическим расплавом, по составу существенно не отличается от магматического циркона в отношении широкого спектра редких элементов (Rubatto, 2002; Каулина, 2010; Глебовицкий и др., 2014). По мнению ряда авторов, такой циркон может считаться «магматическим» (например, Hoskin, Black, 2000). Характер распределения REE в гранулитовом цирконе зависит от состава и объема расплава (Whitehouse, Kamber, 2003).

Циркон метаморфического типа, растущий в равновесии с анатектическим расплавом, как правило, в большинстве случаев не отличается от магматического циркона по составу и характеру распределения редкоземельных элементов и, по мнению некоторых исследователей, такой циркон может считаться «магматическим» по определению (например, Hoskin and Black, 2000).

Образование циркона совместно с другими метаморфическими минералами может влиять на содержание и распределение REE в нем. Метаморфический циркон в условиях высоких и сверхвысоких температур, растущий одновременно с гранатом, характеризуется пониженными содержаниями в нем тяжелых редкоземельных элементов и плоским спектром их распределения (Schaltegger et al. 1999; Bea and Montero, 1999; Rubatto et al., 2001; Hermann et al., 2001; Rubatto, 2002; Rubatto and Hermann, 2003; Whitehouse and Platt, 2003). При этом рост монацита может привести к уменьшению содержания легких редкоземельных элементов.

Для гранулитового циркона характерны вариации аномалий по Се и Еu. Циркон в метаморфических породах обычно имеет положительную Се и
отрицательную Eu аномалию (Hoskin and Shaltegger, 2003). Величина Сеаномалии зависит от количества Ce⁴⁺ в расплаве и определяется отношением Ce⁴⁺/Ce³⁺, которое является в первую очередь функцией фугитивности кислорода (Hoskin and Schaltegger, 2003; Балашов, Скублов, 2009). Велична Eu-аномалии также зависит от отношения Eu^{2+}/Eu^{3+} или от состояния окисления циркона при кристаллизации. Eu-аномалия может быть связана с кристаллизацией полевого шпата, поскольку Eu^{2+} избирательно замещает Ca в плагиоклазе (Bingen et al., 2004). Уменьшение отрицательной Eu аномалии может рассматриваться либо как унаследованное из дометаморфической породы, либо как кристаллизация в отсутствии плагиоклаза (Rubatto, 2002).

Состав и распределение REE в цирконе могут отражать состав исходного расплава, условия кристаллизации и сосуществующий парагенезис (Whitehouse and Platt, 2003).

В последние годы широкое распространение получило создание баз данных по редкоэлементному составу циркона и проведение обобщений на их основе, позволяющих решать различные вопросы петрогенезиса. В качестве примера можно привести обобщающие работы по геохимии магматического циркона Е. Белоусовой с соавторами (Belousova et al., 2002), работы К. Граймса с коллегами по составу циркона из океанических пород (Grimes et al., 2009, 2015), составу циркона из гранатсодержащих метаморфических парагенезисов (Rubatto, 2002) и циркона из эклогитов (Скублов и др., 2012). Иногда подобные обобщающие исследования проводятся только в отношении конкретного элемента – например, титана (Fu et al., 2008), лития (Ushikubo et al., 2008; Bouvier et al., 2012; Trail et al., 2016), гафния (Wang et al., 2015; McKay et al., 2018; Yakymchuk et al., 2018).

Значительное количество аналитических данных по редкоэлементному составу гранулитового циркона из пород далдынской серии Анабарского щита (суммарно 226 анализов) позволяет провести аналогичное обобщение, а также сравнить оригинальный фактический материал с ранее

опубликованными данными для гранулитового циркона ИЗ других метаморфических комплексов Мира (суммарно 322 анализа). При анализе обобщенных данных по составу циркона из исследуемых пород в качестве оценки среднего использовано медианное значение, наиболее полно учитывающее неопределенный или логнормальный характер распределения редких элементов в цирконе в выборке (Скублов и др., 2012). Основные статистические характеристики приведены в таблице В.10 раздельно в зависимости от типа вмещающей породы (основные по составу гранулиты – 59 анализов, средние гранулиты – 30 анализов, кислые гранулиты – 86 анализов, кварциты – 51 анализ). Обобщенные спектры распределения REE в метаморфическом цирконе из гранулитов далдынской серии Анабарского щита в зависимости от типа вмещающей породы приведены на рисунке 4.28. С целью отбраковки потенциальных «отскоков», т.н. аномальных значений как в области повышенных содержаний, так и в области пониженных содержаний, содержание REE на рисунке показано в пределах квантилей 10 и 90 %, что достаточно представительно охватывает весь диапазон возможных значений (80%).

Рисунок 4.28 – Обобщенные спектры распределения REE в метаморфическом цирконе из гранулитов далдынской серии Анабарского щита в зависимости от типа вмещающей породы (содержание REE показано в пределах квантилей 10 и 90%)

В целом поля содержания REE в значительной степени перекрываются для всех четырех групп циркона (рисунок 4.28). Однако циркон из кислых гранулитов и кварцитов заметно отличается от циркона из основных и средних гранулитов повышенным содержанием LREE (около 20 и 30 ррт соответственно, таблица В.10) (Сергеева и др., 2021). Это отличие также проявлено в содержании HREE и в суммарном содержании REE. Наименьшее среднее содержание REE установлено для циркона из средних (около 400 ррт). Для всех гранулитов четырех групп характерен выположенный спектр в области LREE (среднее Sm_N/La_N отношение варьирует в интервале 7.6–12.6), проявлена отрицательная Eu-аномалия 0.35 - 0.42)(среднее значение Eu/Eu* интервале находится В И редуцированная положительная Се-аномалия (среднее значение Се/Се* в интервале 7.1–9.5). Th/U отношение также достаточно находится

111

выдержано для всех четырех групп циркона (среднее значение Th/U отношения находится в интервале 0.35–0.46). Следует подчеркнуть, что эта величина Th/U отношения для гранулитового циркона из далдынской серии границу превышает эмпирическую между магматическим И метаморфическим цирконом, установленную как 0.2 (0.1 – по другим данным), и отвечает значениям, характерным для магматического циркона. Объяснить такую особенность возможно фактом присутствия расплавов при кристаллизации циркона, благодаря этому гранулитовый циркон приобретает некоторые геохимические особенности циркона магматического генезиса. Состав вмещающей породы отражается на содержании Hf – минимальном в цирконе из основных гранулитов (среднее значение около 7900 ррт, таблица В.10) и достаточно высоком в остальных группах (среднее значение варьирует в интервале 9800–10900 ррт, становясь максимальным в цирконе из кислых гранулитов и кварцитов). В цирконе из кислых гранулитов также зафиксировано повышенное среднее содержание U и Th. Аналогично ведет себя Р, повышаясь в среднем от 165 ррт в основных и средних гранулитах до 195–208 ррт в кислых гранулитах и кварцитах. Среднее содержание Ті достаточно выдержанное – на уровне 12 ррт, повышаясь до 19 ррт только в кварцитах, таблица В.10). Средние по составу гранулиты демонстрируют относительно пониженное других групп среднее содержание Υ, составляющее около 500 ррт (800–970 ррт в других группах). Достаточно выдержано содержание Li в цирконе, составляющее в среднем около 1 ppm в кварцитах, около 3 ррт в основных и средних гранулитах и повышаясь до 5 ррт в цирконе из кислых гранулитов (таблица В.10). Такой диапазон Li минимальным содержания является для циркона ИЗ пород континентальной коры (Ushikubo et al., 2008) и может свидетельствовать о заметном вкладе мантийной компоненты при формировании протолита гранулитов.

Распределение REE в гранулитовом цирконе из метаморфических комплексов Мира (рисунок 4.29) отличается от циркона из гранулитов

далдынской серии Анабарского щита более дифференцированным характером с четко проявленными положительной Се-аномалией (среднее значение Се/Се* составляет 48) и отрицательной Еu-аномалией (среднее значение Eu/Eu* равняется 0.10). Только в цирконе из кислых гранулитов зафиксированы пологие спектры в области LREE, при этом средняя величина Sm_N/La_N отношения (16.6) заметно превышает аналогичный показатель для всех групп циркона из гранулитов далдынской серии.

Рисунок 4.29 – Обобщенные спектры распределения REE в гранулитовом цирконе из метаморфических комплексов мира (по данным (Седова и др., 2009; Каулина, 2010; Скублов и др., 2010, 2013; Глебовицкий и др., 2011, 2014; Туркина и др., 2011, 2015; Доливо-Добровольский и др., 2013; Лобач-

Жученко и др., 2015, 2016; Tichomirova et al., 2003; Hou et al., 2005; Nengzhong, Yuanbao, 2008; Kooijman et al., 2011; Orejana et al., 2011; Turkina et al., 2011, 2016, 2017; Taylor et al., 2014; Zhang et al., 2014; Mikhalsky et al., 2015, 2017; Lobach-Zhuchenko et al., 2016; Turkina, Sukhorukov, 2017; Takamura et al., 2020) в зависимости от типа вмещающей породы (содержание REE показано в пределах квантилей 10 и 90 %) На дискриминационной диаграмме соотношения La и Sm_N/La_N (рисунок 4.30) фигуративные точки циркона из гранулитов далдынской серии в основном попадают в поле пористых цирконов, испытавших флюидное воздействие и перекрывающихся по составу с гидротермальными цирконами (Сергеева и др., 2021). Фигуративные точки циркона из гранулитовых комплексов Мира большей частью (за исключением циркона из кислых гранулитов) попадают в поле неизмененных магматических цирконов.

Рисунок 4.30 – Соотношение La и Sm_N/La_N для гранулитового циркона. Поля составов приведены по (Hoskin, 2005, Grimes et al., 2009; Fu et al., 2009; Bouvier et al., 2012)

На дискриминационной диаграмме соотношения Sm_N/La_N и Ce/Ce* (рисунок 4.31) фигуративные точки циркона из гранулитов далдынской серии в основном занимают поле гидротермальных цирконов и промежуточную область между полями магматических и гидротермальных цирконов. Циркон из гранулитовых комплексов Мира демонстрирует значительное

разнообразие составов и в большей степени тяготеет к полю неизмененных магматических цирконов.

Рисунок 4.31 – Соотношение Sm_N/La_N и Ce/Ce* для гранулитового циркона Поля составов приведены по (Hoskin, 2005)

На дискриминационной диаграмме соотношения величин Се- и Еuаномалии (рисунок 4.32) фигуративные точки гранулитового циркона из пород далдынской серии отличаются от циркона из гранулитовых комплексов Мира значительным количеством (около 30) точек с отсутствием или положительной Eu-аномалией. При этом также значительно количество точек с редуцированной отрицательной Eu-аномалией, вместе они образуют единый тренд. Циркон из других гранулитовых комплексов Мира (таких же по составу пород и парагенезисов) не обладает данной особенностью – точек с положительной Eu-аномалией всего 5, а точки с редуцированной Euаномалией (Eu/Eu* > 0.75) отсутствуют. Вторым отличием является в целом пониженное значение Ce/Ce* для циркона из гранулитов далдынской серии.

Рисунок 4.32 – Соотношение Ce/Ce* и Eu/Eu* для гранулитового циркона. Поля составов приведены по (Hoskin, 2005)

Положительная Еи-аномалия характерна не циркона для магматического и метаморфического генезиса. В цирконе магматического генезиса, как правило, Eu-аномалия имеет отрицательный знак, считающийся типоморфным признаком магматического циркона, наряду с положительной Се-аномалией. Для метаморфического циркона более характерно ee выполаживание (Балашов, Скублов, 2011) или даже практически полное исчезновение, как в случае с эклогитовым цирконом (Скублов и др., 2012). Причин, приводящих к выполаживанию (редуцированию) отрицательной Еианомалии и смене ее знака на противоположный положительный, может быть несколько – изменение редокс-условий среды кристаллизации циркона; отсутствие плагиоклаза (главного минерала-концентратора Eu) В особая последовательность кристаллизации парагенезисе или его относительно циркона; кислотность-щелочность флюидов/гидротермальных растворов, воздействующих на циркон, а также привнос Еи флюидами в случае открытой системы. На появление Еи-аномалии в цирконе оказывает влияние окислительно-восстановительные условия. Вхождение В кристаллическую решетку циркона более крупного Eu²⁺ (ионный радиус 1.25) Å) затруднено по сравнению с меньшим по размерам Eu³⁺ (1.066Å), поэтому величина отрицательной Еu-аномалии зависит от Eu²⁺/Eu³⁺ отношения, определяемого редокс-параметрами в процессе кристаллизации (Bingen et al., 2004). Однако Eu²⁺/Eu³⁺ отношение в породе в целом, количество Eu²⁺ или кристаллизация других фаз не являются единственными факторами, определяющими величину Eu-аномалии в цирконе (Schulz et al., 2006). Величина отрицательной Еи-аномалии находится в сильной положительной корреляцией с содержанием Y в цирконе (Belousova et al., 2002). Уменьшение величины отрицательной Eu-аномалии, вплоть до ее исчезновения, является характерной чертой метаморфического циркона с Th/U отношением меньше 0.01 по причине изоморфного вхождения [8]Eu³⁺ (1.066 Å) в позицию [8]Th⁴⁺ (1.05 Å) в кристаллической структуре циркона (Rubatto, 2002). И наоборот, отрицательная Еи-аномалия в цирконе лучше проявляется в породах с высоким содержанием Th случае или В с высокоториевым или высокоурановым цирконом из гранитоидов (Belousova et al., 2002).

Положительная Еи-аномалия менее характерна для циркона. В основном она встречается в цирконе т.н. гидротермально-метасоматического типа, кристаллизовавшегося из флюида или, что встречается реже, из флюидонасыщенного расплава. Характерной особенностью состава такого LREE. циркона является повышенное содержание приводящее К выполаживанию всего спектра REE с исчезновением или редуцированием положительной Ce-аномалии, исчезновение отрицательной Eu-аномалии или смена ее знака на положительный, крайне низкое Th/U отношение, значительное количество неформульных элементов-примесей (таких как Са, Sr, Ba, Ti) (например, Levskii et al., 2009; Скублов и др., 2013). Внутренняя структура циркона этого типа часто характеризуется пористым строением,

темной окраской в CL и BSE изображении, ростовая осцилляционная зональность в нем отсутствует. Геохимические особенности циркона гидротермально-метасоматического типа, по всей видимости, унаследованы от состава флюида. Аналогичные недифференцированные (обогащенные LREE) спектры распределения REE с положительной Eu-аномалией были установлены для современных морских гидротермальных флюидов (Bau, Dulski, 1999; Craddock et al., 2010), в современных вулканогенных гидротермальных системах (Karpov et al., 2013). Степень положительной Euаномалии BO многом определяется кислотно-щелочным режимом, доминирующим окислительно-восстановительными условиями. над Пористые цирконы, в фигуративное поле которых попадает значительная часть циркона из гранулитов далдынской серии, по целому ряду признакам – как внутреннему строению, так и особенностям состава, относятся к гидротермально-метасоматическому типу. Положительная Eu-аномалия в них, скорее всего, унаследована от флюида. Следует подчеркнуть, что выделить какой-то конкретный фактор, ответственный за появление положительной Eu-аномалии бывает затруднительно, также, как и оценить реальное соотношение двух- и трехвалентного Eu в цирконе без применения специальных методов исследования (XANES, мессбауэровская спектроскопия). Тем не менее, само по себе наличие положительной Еианомалии в цирконе является его крайне нетипичной особенностью, связанной, вероятней всего, с воздействием флюидов.

На рисунке 4.33 приведены спектры распределения REE в цирконе из гранулитов далдынской серии с положительной Eu-аномалией. В данную категорию (21 проба) попадает циркон из всех выделенных типов пород.

118

Рисунок 4.33 – Спектры распределения REE в цирконе из гранулитов далдынской серии с положительной Eu-аномалией

Следует отметить, что рассматриваемый циркон не демонстрирует аномального обогащения ни в целом REE (их суммарное содержание находится в интервале 34–1060 ppm), ни LREE. Только для пяти точек относительно повышенное содержание LREE приводит к выполаживанию спектров REE в цирконе (рисунок 4.33). Остальные 15 спектров (за исключением одного спектра с низким содержанием LREE) образуют конформных спектров, компактную группу что подчеркивает ИХ неслучайность. Проведенный корреляционный анализ установил, что величина Eu-аномалиии в цирконе (отношение Eu/Eu*) имеет значимые положительные коэффициенты корреляции с собственно содержанием Еи, а также с содержанием Ca, Ti, Sr, Li, Th. Значимые отрицательные коэффициенты корреляции установлены для крайних членов ряда HREE (Er, Yb, Lu) и величины положительной Се-аномалии (отношение Ce/Ce*). Неформульные для циркона элементы Ca, Ti и Sr являются характерным признаком флюидного воздействия на циркон (Geisler, Schleicher, 2000).

Рисунок 4.34 демонстрирует, что в значительном количестве проб циркона содержание неформульных элементов Са и Ті превышает эмпирические верхние пределы, установленные для цирконов, не испытавших флюидное воздействие. Аналогичное превышение устанавливается и для Sr (таблица В.10).

Рисунок 4.34 – Соотношение Са (ppm) и Ті (ppm) в гранулитовом цирконе из пород далдынской серии. Пунктиром показано пороговое содержание Са (100 ppm, Geisler, Schleicher, 2000) и Ті (20 ppm, Fu et al., 2008) в цирконе, не испытавшем флюидное воздействие

По всей видимости, этим же флюидом были привнесены Eu, Li, Th (для U коэффициент корреляции тоже положительный, но немногим меньше порога значимости для 21 пробы). Поскольку Li в составе циркона является индикатором коровых процессов (Ushikubo et al., 2008), то природа флюида тоже коровая. Возможно предположить, что LREE этим флюидом в значительном количестве не привносились. Данная особенность отличает рассматриваемый гранулитовый циркон с положительной Eu-аномалией от

циркона гидротермально-метасоматического типа, тоже с положительной Euаномалией, но отличающегося высоким содержанием всего спектра несовместимых элементов, включая LREE (Levskii et al., 2009; Скублов и др., 2013).

Возможно сделать вывод, что циркон из гранулитов далдынской серии, по сравнению с цирконом из гранулитов других регионов мира, имеет геохимические признаки (инверсию Eu-аномалии и редуцирование Ceаномалии, выполаживание спектра в области LREE, обогащение Ca, Ti, Sr), отражающие воздействие флюида, обогащенного несовместимыми элементами.

4.7 Выводы по главе 4

В результате комплексного изотопно-геохимческого исследования (U-Рь метод по циркону, Lu-Hf и Sm-Nd систематики, изотопный состав кислорода в цирконе и распределение редких и редкоземельных элементов в цирконе) гранулитов далдынской серии Анабарского щита и циркона из них установлен наиболее древний мезоархейский этап формирования протолита для биотит-гиперстеновых кристаллосланцев с возраст ~ 3.0 млрд лет. Время раннеархейского этапа гранулитового метаморфизма, проявления установленный по метаморфическим каймам циркона, определено как ~ 2.7 Палеопротерозойский гранулитового метаморфизма млрд лет. этап составляет ~ 2.0 млрд лет. Анализ характера распределения редкоземельных и редких элементов в цирконе и сравнение полученных данных с цирконом из других комплексов мира позволяет сделать вывод о TOM, что исследованный гранулитовый циркон имеет геохимические признаки, отражающие флюидное воздействие.

ЗАКЛЮЧЕНИЕ

Диссертация представляет собой законченную научноработу, квалификационную которой, В В результате проведенного минералого-геохимического комплексного И изотопно-геохимического исследования циркона, а также вмещающих пород и породообразующих минералов была получена дополнительная информация о возрасте и этапов метаморфизма для гранулитов далдынской серии Анабарского щита (Гусев и др., 2019; Гусев и др., 2020; Сергеева и др., 2020; Сергеева и др., 2021).

Проведенное изотопно-геохимическое исследование циркона ИЗ кварцитов далдынской серии вносит существенный вклад в решение проблем эволюции ранней континентальной коры Анабарского щита. Установленный для циркона возраст 3.5 млрд лет отражает преобладание в области сноса палеоархейских магматических пород. Изотопный состав кислорода в цирконе кварцитов указывает на существенную ИЗ контаминацию материнских расплавов супракрустальным веществом.

Наиболее древний мезоархейский этап формирования протолита установлен для биотит-гиперстеновых кристаллосланцев (обр. 508) с возрастом ~ 3.0 млрд лет (Сергеева и др., 2017). Для пород далдынской серии были установлены два этапа гранулитового метаморфизма. Время раннего этапа преобразования пород в услових гранулитовой фации, установленное по циркону (U-Pb метод), составляет ~2,7 млрд лет (Гусев и др, 2016; Гусев и др., 2017). Палеопротерозойский этап гранулитового метаморфизма с возрастом ~ 2.0 млрд лет определен по метаморфизма с возрастом 1.9 млрд лет установлен по породе, гранату и амфиболу (Sm-Nd метод). Параметры пика гранулитового метаморфизма определены как 775 \pm 35 °C и 7.5 \pm 0.7 кбар. Параметры регрессивного этапа метаморфизма, приведшего к формированию Grt-Amph парагенезиса, составляют около 700 °C и 7 кбар.

Проведен сравнительный анализ данных по редкоэлементному составу циркона из гранулитов далдынской серии и сопоставление с данными для гранулитового циркона из других регионов мира (суммарно около 550 анализов). Установлено, что гранулитовый циркон из пород далдынской серии имеет геохимические признаки гидротермально-метасоматического (инверсия Еи-аномалии Се-аномалии, циркона И редуцирование выполаживание спектра в области LREE, обогащение несовместимыми элементами Ca, Ti, Sr), отражающие флюидное воздействие в процессе Установлено значительное метаморфизма. количество циркона с положительной Eu-аномалией, для которого положительная корреляция Eu/Eu* и содержания Eu с содержанием Ca, Ti, Sr, Li, Th указывает на привнос этих элементов флюидом. LREE этим флюидом в значительном количестве не привносились. Данная особенность отличает гранулитовый циркон с положительной Еи-аномалией от циркона гидротермально-Еи-аномалией, метасоматического типа, тоже с положительной HO отличающегося высоким содержанием всего спектра несовместимых элементов, включая LREE.

В качестве перспективы продолжения изучения гранулитов далдынской серии Анабарского щита автор рассматривает их дальнейшее комплексное петрологическое и изотопно-геохимическое исследование гранулитов Анабарского щита, преимущественно на минеральном уровне.

СПИСОК ЛИТЕРАТУРЫ

- Авченко, О.В. Петрогенетическая информативность гранатов / О.В. Авченко. – Москва: Наука, 1982. – 100 с.
- Алфимова, Н.А. Геохимия цирконов из протерозойской коры выветривания гранитоидов Северной Карелии / Н.А. Алфимова, В.А. Матреничев, Т.Ф. Зингер, С.Г. Скублов // Геохимия. – 2011. – Т. 438, № 1. – С. 101–104.
- Балашов, Ю.А. Контрастность геохимии магматических и вторичных цирконов / Ю.А. Балашов, С.Г. Скублов // Геохимия. – 2011. – № 6. – С. 622– 623.
- Березин, А.В. Новые данные о возрасте (U-Pb, Sm-Nd) и P-T параметрах эклогитизации даек Fe-габбро района с. Гридино (Беломорский подвижный пояс) / А.В. Березин, В.В. Травин, Ю.Б. Марин, С.Г. [и др.] // Доклады АН. – 2012. – Т. 444, № 6. – С. 644–649.
- 5. Бибикова, Е.В. Уран-свинцовая геохронология ранних этапов развития древних щитов / Е.В. Бибикова. Москва: Наука, 1989. 179 с.
- Богомолов, М.Н. Мантийные происхождение мафитовой расслоенной ассоциации / М.Н. Богомолов, В.Ф. Гусева, С.И. Турченко // Доклады АН. 1993. Т. 331, № 3. С. 332–334.
- Бушмин, С.А. Флюиды гранулитов высоких давлений / С.А. Бушмин, Е.А. Вапник, М.В. Иванов [и др.] // Петрология. – 2020. – Т. 28, № 1. – С. 23–54.
- Глебовицкий, В.А. Геохимия циркона ультраметаморфогенных гранитоидов зоны сочленения Алданского щита и Джугджуро-Становой складчатой области / В.А. Глебовицкий, И.С. Седова, С.Г. Скублов [и др.] // Записки российского минералогического общества. – 2011. – № 5. – С. 13–35.
- Глебовицкий, В.А. Циркон чарнокитогнейсов, чарнокитов и лейкосом мигматитов Нимнырского блока Алданского щита / В.А. Глебовицкий, И.С. Седова, Н.Г. Бережная [и др.] // Записки российского минералогического общества. – 2014. – № 3. – С. 23–45.

- Гусев, Н.И. Возраст гранулитов Далдынской серии Анабарского щита / Н.И. Гусев, В.Е. Руденко, Н.Г. Бережная [и др.] // Региональная геология и металлогения. – 2012. – № 52. – С. 29–38.
- Гусев, Н.И. Архейские гранулиты далдынской и верхнеанабарской серий в Джелиндинской глыбе (Анабарский щит Сибирского кратона): геохимия, изотопия, возраст / Н.И. Гусев, В.Е. Руденко, Л.Ю. Сергеева // Региональная геология и металлогения. – 2016. № 66. – С. 30–44.
- Гусев, Н.И. Состав и соотношения ранней и позднеархейских гранулитов в бекелехской толще Анабарского щита (Сибирский кратон) / Н.И. Гусев, Л.Ю. Сергеева, С.Г. Скублов, Н.Г. Бережная, А.Н. Ларионов // Региональная геология и металлогения. – 2017. – № 70. – С. 17–35.
- Гусев, Н.И. Свидетельства переработанной эоархейской коры на Анабарском щите (Сибирский кратон) / Н.И. Гусев, Л.Ю. Сергеева, С.Г. Скублов // Региональная геология и металлогения. – 2019. – № 78. – С. 40–57.
- Гусев, Н.И. Реликты эоархейской континентальной коры Анабарского щита, Сибирский кратон / Н.И. Гусев, Л.Ю. Сергеева, А.Н. Ларионов, С.Г. Скублов // Петрлогия. – 2020. – № 2. – С. 115–138.
- Гусев, Н.И. Свидетельства субдукции палеопротерозойской океанической коры в Хапчанском поясе Анабарского щита Сибирского кратона / Н.И. Гусев, Л.Ю. Сергеева, С.Г. Скублов // Петрология. 2020. Т. 29, № 2. С. 115–135.
- Доливо-Добровольский, Д.В. Возраст (U–Pb, SHRIMP-II), Геохимия циркона и условия образования сапфиринсодержащих пород Центрально-Кольской гранулито-гнейсовой области / Д.В. Доливо-Добровольский, С.Г. Скублов, В.А. Глебовицкий [и др.] // Доклады Академии наук. – 2013. – Т. 453, № 2. – С. 190–195.
- Другова, Г.М. Распределение редкозмельных элементов в гранатах Лапландского гранулитового пояса и сопредельных территорий / Г.М. Другова, С.Г. Скублов, А.Б. Вревский, Н.Е. Козлов // Геохимия. – 2001. – № 2. – С. 232–237.

- 18. Злобин, М.Н. О расчленении билляхской серии синийского комплекса / М.
 Н. Злобин // Ученые записки НИИГА. Региональная геология. 1968. №.
 13. 135 с.
- 19. Капитонов, И.Н. Возможности LA-ICP-MS методики определения ¹⁷⁶Hf/¹⁷⁷Hf в древнейших (> 3 млрд лет) цирконах / И. Н. Капитонов, Е.В. Адамская, К.И. Лохов, С.А. Сергеева // XVIII симпозиум по геохимии изотопов. Тез. докл. М., ГЕОХИ РАН. – 2007. – С. 117.
- Каулина, Т.В. Образование и преобразование циркона в полиметаморфических комплексах / Т.В. Каулина. – Апатиты: КНЦ РАН, 2010. – 114 с.
- 21. Ковач, В.П. Возрастные границы формирования высокометаморфизованных супракрустальных комплексов центральной части Алданского щита: Sm-Nd изотопные данные / В.П. Ковач, А.Б. Котов, В.И. Березкин [и др.] // Стратиграфия. Геологическая корреляции. 1999. Т. 7, № 1. С. 3–17.
- Лобач-Жученко, С.Б. Состав и возраст цирконов Орехово-Павлоградской сдвиговой зоны (Украинский щит): вклад в реконструкцию истории геологического развития / С.Б. Лобач-Жученко, С.Г. Скублов, Ш.К. Балтыбаев [и др.] // Геохимия. 2015. № 5. С. 395–417.
- Добач-Жученко, С.Б. Изотопно-геохимические особенности циркона и его значение для реконструкции геологической истории раннеархейских гранулитов Украинского щита / С.Б. Лобач-Жученко, Т.В. Каулина, К.И. Лохов [и др.] // Записки российского минералогического общества. 2016. № 4. С. 1–19.
- 24. Лохов, К.И. Корректная интерпретация U-Pb возраста по цирконам на основе изотопной геохимии гафния и неодима (на примере некоторых магматических комплексов фундамента Восточно-Европейской платформы) / К.И. Лохов, Т.Е. Салтыкова, И.Н. Капитонов [и др.] // Региональная геология и металлогения. 2009. № 38. С. 43–53.
- Лутц, Б.Г. Петрология гранулитовой фации Анабарского массива / Б.Г. Лутц. – Москва: Наука, 1964. – 124 с.

- 26. Ножкин, А.Д. Геохимия гранулитов канского шарыжалгайского комплексов / А.Д. Ножкин, О.М. Туркина. Новосибирск: ОИГГМ СО РАН, 1993. 219 с.
- Перчук, Л.Л. Принцип влияния температуры и давления на равновесия природных железомагнезиальных минералов / Л.Л. Перчук. // Известия АН СССР. Сер. геол., 1968 – Т. 12. – С. 3–30.
- Перчук, Л.Л. Термодинамический режим глубинного петрогенеза / Л.Л. Перчук. – Москва: Наука, 1973 – 316 с.
- Перчук, Л.Л. Термометрия и барометрия минеральных равновесий теоретический аспект и приложение. Проблемы биминеральной геотермобарометрии / Л.Л. Перчук // Труды Института геологии и геохимии. Свердловск. – 1976. – Вып. 130. – С. 14–24.
- Рабкин, М.И. Геология и петрология Анабарского кристаллического щита / М. И. Рабкин. – Москва: Госгеолтехиздат, 1959 – 164 с.
- Розен, О.М. Строение земной коры Анабарского щита / О.М. Розен, А.Н. Вишневский, М.З. Глуховский [и др.] Москва: Наука, 1986 200 с.
- Розен, О.М. Архей Анабарского щита и проблемы эволюции Земли / О.М.
 Розен, В.П. Андреев, А.Н. Белов [и др.] Москва: Наука, 1988 253 с.
- 33. Розен, О.М. Ранняя кора Анабарского щита, возраст и модели формирования / О.М. Розен, Е.В. Бибикова, Д.З. Журвлев // Ранняя кора: ее состав и возраст. М.: Наука. – 1991. – С. 199–224.
- 34. Розен, О.М. Сибирский кратон: тектоническое районирование, этапы эволюции / О.М. Розен // Геотектоника. 2003. № 3. С. 3–21.
- 35. Розен, О.М. Палеопротерозойская аккреция на северо-востоке Сибирского кратона: изотопное датирование Анабарской коллизионной системы / О.М. Розен, Л.К. Левский, Д.З. Журавлев [и др.] // Стратиграфия. Геологическая корреляция. – 2006. – Т. 14, № 6. – С. 3–24.
- Седова, И.С. Циркон в полимигматитах С.-З. Приладожья: морфология и геохимия / И.С. Седова, Л.М. Саморукова, В.А. Глебовицкий, С.Г. Скублов // Геохимия. 2009. № 10. С. 1050–1066.

- Сергеева, Л.Ю. Геохимия циркона из гранулитов далдынской серии (Анабарский щит) / Л.Ю. Сергеева, Н.И. Гусев, С.Г. Скублов, А.Е. Мельник // Записки российского минералогического общества. – 2016. – № 6. – С. 20– 44.
- 38. Сергеева, Л.Ю. Возраст и происхождение пород далдынской серии Анабарского щита по данным U-Pb датирования циркона, Sm-Nd и Lu-Hf изотопных систематик / Л.Ю. Сергеева, Н.И. Гусев, К.И. Лохов, В.А. Глебовицкий // Геохимия. – 2017. – № 4. – С. 358–362.
- Сергеева, Л.Ю. Возраст и параметры метаморфизма гранулитов Капральско-Джегесского синклинория Анабарскго щита / Л.Ю. Сергеева, А.В. Березин, Н.И. Гусев, С.Г. Скублов, А.Е. Мельник // Записки Горного института. – 2018. – Т. 229. – С. 13–21.
- 40. Сергеева, Л.Ю. Геохимия, U-Pb возраст и Lu-Hf изотопный состав гранулитов далдынской серии (Анабарский щит) / Л.Ю. Сергеева, Н.И. Гусев, С.Г. Скублов // Материалы X Всероссийской молодежной научной конференции "Минералы: строение, свойства, методы исследования". Екатеринбург: Институт геологии и геохимии УрО РАН, 2019. С. 217–219.
- 41. Сергеева, Л.Ю. Палеоархейский детритовый циркон из кварцитов далдынской серии (Анабарский щит) / Л.Ю. Сергеева, Н.И. Гусев, С.Г. Скублов, Ли-С.-Х., Ли-Ч.-Л. // Материалы XI Всероссийской молодежной научной конференции «Минералы: строение, свойства, методы исследования». Екатеринбург: Институт геологии и геохимии УрО РАН, 2020. С. 260–262.
- 42. Сергеева, Л.Ю. Эоархейский циркон из гранулитов далдынской серии Анабарского щита / Л.Ю. Сергеева, Н.И. Гусев // Материалы XIII Международной научно-практической конференции студентов, аспирантов и молодых ученых «Геология в развивающемся мире». Пермь: Пермский государственный национальный исследовательский университет, 2020. С. 154–156.

- Сергеева, Л.Ю. U-Pb возраст и геохимия детритового циркона из кварцитов Далдынской серии (Анабарский щит) / Л.Ю. Сергеева, Н.И. Гусев, С.Г. Скублов // Геохимия. 2020. № 6. С. 1–9.
- 44. Сергеева, Л.Ю., Геохимия и U-Pb возраст циркона из пород Салтахского массива, Анабарский щит / Л.Ю. Сергеева, Н.И. Гусев, С.Г. Скублов // Материалы XXIX Всероссийской молодежной конференции «Строение литосферы и геодинамики». Иркутск: ФГБУН Институт Земной коры CO PAH, 2021. С. 242–244.
- 45. Сергеева, Л.Ю. Закономерности состава гранулитового циркона по редким и редкоземельным элементам из пород далдынской серии, Анабарский щит (Россия) / Л.Ю. Сергеева, Н.И. Гусев, С.Г. Скублов // Геологический международный студенческий саммит. СПб: Санкт-Петербургский государственный университет, 2021. С. 154–157.
- Скублов, С.Г. Геохимия редкоземельных элементов в породообразующих метаморфических минералах / С.Г. Скублов. Санкт-Петербург: Наука, 2005. 147 с.
- Скублов, С.Г. Особенности геохимии цирконов из мигматитов Нимнырского блока Алданского щита / С.Г. Скублов, И.С. Седова, В.А. Глебовицкий [и др.] // Геохимия. – 2010. – № 12. – С. 1320–1329.
- Скублов, С.Г. Особенности геохимии цирконов из ксенолитов кимберлитовой трубки им В. Гриба Архангельской алмазоносной провинции / С.Г. Скублов, Е.В. Щукина, Н.С. Гусева [и др.] // Геохимия. 2011 № 4. С. 435–441.
- 49. Скублов, С.Г. Общие закономерности состава цирконов из эклогитов по редким элементам применительно к проблеме возраста эклогитов Беломорского подвижного пояса / С.Г. Скублов, А.В. Березин, Н.Г. Бережная // Петрология. – 2012. – № 5. – С. 470–494.
- 50. Скублов, С.Г. Геохимия разновозрастных кайм циркона в гнейсах кольской серии (SIMS, SHRIMP-II) и проблема раннекаледонской термальной

активизации Кольского кратона / С.Г. Скублов, Т.А. Мыскова, Ю.Б. Марин [и др.] // Доклады РАН. – 2013. – №. 5. – С. 544–550.

- Соболев, А.В. Мантийные лерцолиты офиолитового комплекса Троодос, о-в Кипр: геохимия клинопироксена / А.В. Соболев, В.Г. Батанова // Петрология. – 1995. – Т. 3. – №. 5. – С. 487–495.
- 52. Степанюк, Л.М. Кристаллогенезис и возраст циркона в породах гранулитовой фации (на примере мафитового гранулита далдынской серии Анабарского щита) / Л.М. Степанюк, А.Н. Пономаренко, Б.Г. Яковлев [и др.] // Минералогический журнал. 1993. Т. 15, №. 2. С. 40–57.
- 53. Тейлор, С.Р. Континентальная кора: ее состав и эволюция / С.Р. Тейлор, С.М. Мак-Леннан – Москва: Мир, 1988. – 284 с.
- 54. Тугаринов, А.И. Геохронология Балтийского щита / А.И. Тугаринов, Е.В. Бибикова Москва: Наука, 1980. 131 с.
- 55. Туркина, О.М. Формирование и мезоархейский метаморфизм гиперстеновых гнейсов в Иркутном гранулитогнейсовом блоке (Шарыжалгайский выступ Сибирского кратона) / О.М. Туркина, Л.Н. Урманцева, Н.Г. Бережная, С.Г. Скублов // Геология и геофизика. – 2011. – Т. 52, № 1. – С. 122–137.
- 56. Туркина, О.М. Возрастные рубежи и условия метаморфизма мафических гранулитов в раннедокембрийском комплексе Ангаро-Канского блока / О.М. Туркина, В.П. Сухоруков // Геология и геофизика. – 2015. – Т. 56, № 11. – С. 1961–1986.
- 57. Федотова, А.А. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях / А.А. Федотова, Е.В. Бибикова, С.Г. Симакин // Геохимия. – 2008. – Т. 9. – С. 980-997.
- 58. Anczkiewicz, R. Improving precision of Sm-Nd garnet dating by H₂SO₄ leaching: a simple solution to the phosphate inclusion problem / R. Anczkiewicz, M.F. Thirlwall // Geological Society, London, Special Publications. 2003. V. 220, № 1. P. 83–91.

- Anderson, D.E. Zoning in garnets diffusion models / D.E. Anderson, G.R. Buckley // Contributions to Mineralogy and Petrology. – 1973. – V. 40, № 2. – P. 87–104.
- Basu, A. Rare earth elements in the sedimentary cycle: a pilot study of the first leg / A. Basu, D.P. Blanchard, J.C. Brannon // Sedimentology. 1982. V. 29, № 5. P. 737–742.
- 61. Bau, M. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater / A. Bau, P. Dulski // Chemical Geology. – 1999. – V. 155, № 1–2. – P. 77–90.
- Belousova, E.A. Igneous zircon: trace element composition as an indicator of source rock type / E.A. Belousova, W.L. Griffin, S.Y. O'Reilly, N.L. Fisher // Contributions to mineralogy and petrology. 2002. T. 143, №. 5. C. 602–622.
- 63. Berman, R.G. Thermobarometry using multi-equilibrium calculations; a new technique, with petrological applications // The Canadian Mineralogist. 1991. V. 29, № 4. P. 833–855.
- 64. Bibikova, E.V. Ion microprobe U-Th-Pb isotopic studies of zircons from three early Precambrian areas in the USSR / E.V. Bibikova, I.S. Williams // Precambrian Research. – 1990. – V. 48, № 3. – P. 203–221.
- Bingen, B. Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway / B. Bingen, H. Austrheim, M.J. Whitehouse, W.J. Davis // Contributions to Mineralogy and Petrology. 2004. V. 147, № 6. P. 671–683.
- 66. Black, L.P. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology / L.P. Black, S.L. Kamo, C.M. Allen [et al.] // Chemical geology. 2003. T. 200, №. 1-2. C. 155–170.
- 67. Blackburn, W.H. Zoned and unzoned garnets from the Grenville gneisses around Gananoque, Ontario // The Canadian Mineralogist. 1969. V. 9, № 5. P. 691–698.

- Blichert-Toft, J. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system / J. Blichert-Toft, F. Albarède // Earth and Planetary Science Letters. 1997. V. 148, № 1-2. P. 243–258.
- 69. Bolhar, R. Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8–3.1 Ga detrital zircons / R. Bolhar, A. Hofmann, A.I.S. Kemp [et al.] // Geochimica et Cosmochimica Acta. 2017. T. 215. C. 432–446.
- 70. Bouvier, A.S. Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids / A.S. Bouvier, T. Ushikubo, N.T. Kita [et al.] // Contributions to Mineralogy and Petrology. 2012. T. 163, №. 5. C. 745–768.
- Cavosie, A.J. Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge / A.J. Cavosie, N.T. Kita, J.W. Valley // American Mineralogist. – 2009. – V. 94, № 7. – P. 926–934.
- Chauvel, C. A hafnium isotope and trace element perspective on melting of the depleted mantle / C. Chauvel, J. Blichert-Toft //Earth and Planetary Science Letters. – 2001. – V. 190, № 3-4. – P. 137–151.
- Cherniak, D.J. Diffusion in zircon / D.J. Cherniak, E.B. Watson // Reviews in mineralogy and geochemistry. – 2003. – V. 53, № 1. – P. 113–143.
- 74. Craddock, P.R. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins / P.R. Craddock, W. Bach, J.S. Seewald [et al.] // Geochimica et Cosmochimica Acta. – 2010. – V. 74, № 19. – P. 5494-5513.
- 75. Condie, K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales / K. C. Condie // Chemical geology. 1993. V. 104, № 1-4. P. 1–37.
- Condie, K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales // Chemical geology. 1993. V. 104, № 1–4. P. 1–37.

- 77. Cullers, R.L. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA / R.L. Cullers, A. Basu, L.J. Suttner // Chemical Geology. 1988. V. 70, № 4. P. 335–348.
- 78. Cullers, R.L. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA / R.L. Cullers, A. Basu, L.J. Suttner // Chemical Geology. – 1988. – V. 70, № 4. – P. 335–348.
- 79. de Capitani, C. The computation of equilibrium assemblage diagrams with Theriak/Domino software / C. de Capitani, K. Petrakakis // American Mineralogist. - 2010. - V. 95, № 7. - P. 1006–1016.
- de Capitani, C. The computation of equilibrium assemblage diagrams with Theriak/Domino software / C. de Capitani, K. Petrakakis // American Mineralogist. - 2010. - V. 95, № 7. - P. 1006–1016.
- 81. De la Roche, H. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationships with current nomenclature / H. De la Roche, J. Leterrier, P. Grandclaude [et al.] // Chemical geology. 1980. V. 29, № 1–4. P. 183–210.
- Elhlou, S. Trace element and isotopic composition of GJ-red zircon standard by laser ablation / S. Elhlou, E. Belousova, W.L. Griffin [et al.] // Geochimica et Cosmochimica Acta. – 2006. – V. 70, № 18. – P. 158–158.
- 83. Fu, B. Ti-in-zircon thermometry: applications and limitations / B. Fu, F.Z. Page,
 A.J. Cavosie [et al.] // Contributions to Mineralogy and Petrology. 2008. V.
 156, № 2. P. 197-215
- Fu, B. Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia / B. Fu, T. P. Mernagh, N. T. Kita [et al.] // Chemical Geology. 2009. V. 259, № 3-4. P. 131–142.
- 85. Gao, Y.Y. Screening criteria for reliable U–Pb geochronology and oxygen isotope analysis in uranium-rich zircons: A case study from the Suzhou A-type

granites, SE China / Y.Y. Gao, X.H. Li, W.L. Griffin [et al.] // Lithos. – 2014. – V. 192. – P. 180–191.

- 86. Geisler, T. Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon / T. Geisler, H. Schleicher // Chemical Geology. – 2000. – V. 163, № 1–4. – P. 269–285.
- Gladkochub, D. The Siberian Craton and its evolution in terms of the Rodinia hypothesis / D. Gladkochub, T. Donskaya, A. Mazukabzov [et al.] // Episodes. – 2006. – T. 29, № 3. – P. 169–174.
- Glikson, A. Y. The Archaean: geological and geochemical windows into the early earth. – Springer International Publishing, 2014. – 238 p.
- Goldstein, S.J. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution / S.J. Goldstein, S.B. Jacobsen // Earth and Planetary Science Letters. – 1988. – V. 87, № 3. – P. 249–265.
- 90. Griffin, W.L. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites / W.L. Griffin, N.J. Pearson, E. Belousova [et al.] // Geochimica et cosmochimica acta. 2000. V. 64, №. 1. P. 133–147.
- 91. Grimes, C.B. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere / C.B. Grimes, B.E. John, M.J. Cheadle [et al.] // Contributions to Mineralogy and Petrology. 2009. V. 158, №. 6. P. 757–783.
- 92. Grimes, C.B. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon / C.B. Grimes, J.L. Wooden, M.J. Cheadle [et al.] // Contributions to Mineralogy and Petrology. – 2015. – V. 170, № 5–6. – P. 1–26.
- 93. Gusev, N.I. Dating the sedimentary protolith of the Daldyn Group quartzite, Anabar Shield, Russia: New Detrital Zircon Constraints / N.I. Gusev, L.Yu. Sergeeva, S.G. Skublov // Geosciences. – 2020. – Vol. 10 (6). – 208.
- 94. Hanchar, J.M. Rare earth element behavior in zircon-melt systems / J. M. Hanchar, W. Van Westrenen // Elements. 2007. V. 3, № 1. P. 37–42.

- 95. Harley S.L. The origins of granulites: a metamorphic perspective / S. L. Harley
 // Geological Magazine. 1989. V. 126, № 3. P. 215-247.
- 96. Harley, S.L. Zircon behaviour and the thermal histories of mountain chains / S.L. Harley, N.M. Kelly, A. Möller // Elements. – 2007. – V. 3, № 1. – P. 25–30.
- 97. Harley, S.L. Zircon tiny but timely / S.L. Harley, N.M. Kelly // Elements. 2007. – V. 3, № 1. – P. 13–18.
- Hawkesworth, C.J. Earth's continental lithosphere through time / C.J. Hawkesworth, P.A. Cawood, B. Dhuime [et al.] // Annual review of earth and planetary sciences. – 2017. – V. 45. – P. 169–198.
- 99. Hinton, R.W. The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths / R.W. Hinton, B.G.J. Upton // Geochimica et Cosmochimica Acta. 1991. V. 55, № 11. P. 3287–3302.
- 100. Hoffmann, J.E. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs / J.E. Hoffmann, C. Münker, T. Næraa [et al.]
 // Geochimica et Cosmochimica Acta. 2011. V. 75, №. 15. P. 4157–4178.
- 101. Hoskin, P.W.O. The composition of zircon and igneous and metamorphic petrogenesis / P.W.O. Hoskin, U. Schaltegger // Reviews in mineralogy and geochemistry. – 2003. – V. 53, № 1. – P. 27–62.
- 102. Jacobsen, S.B. Sm-Nd isotopic evolution of chondrites and achondrites, II / S.B. Jacobsen, G.J. Wasserburg // Earth and Planetary Science Letters. 1984. V. 67, № 2. P. 137–150.
- 103. Karpov, G.A. Abundances and sources of rare-earth elements in the modern volcanogenic hydrothermal systems of Kamchatka / G.A. Karpov, A.G. Nikolaeva, Y.V. Alekhin // Petrology. – 2013. – V. 21, № 2. – P. 145–157.
- 104. Kielman, R.B. U-Pb age distribution recorded in zircons from Archean quartzites in the Mt. Alfred area, Yilgarn Craton, Western Australia / R.B. Kielman, A.A. Nemchin, M.J. Whitehouse [et al.] // Precambrian Research. – 2018. – V. 310. – P. 278–290.
- 105. Kirkland, C.L. Zircon Th/U ratios in magmatic environs / C.L. Kirkland, R.H. Smithies, R. J. M. Taylor [et al.] // Lithos. 2015. V. 212. P. 397–414.

- 106. Kooijman, E. Response of the U–Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: the Kadavur anorthosite complex, southern India / E. Kooijman, D. Upadhyay, K. Mezger [et al.] // Chemical Geology. – 2011. – V. 290, № 3–4. – P. 177–188.
- 107. Leake, B.E. Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names / B.E. Leake, A.R. Woolley, C.E. Arps [et al.] // The Canadian Mineralogist. – 1997. – V. 35, № 1. – P. 219–246.
- 108. Lee, J.K.W. Pb, U and Th diffusion in natural zircon / J.K.W. Lee, I.S. Williams, D.J. Ellis // Nature. 1997. V. 390, № 6656. P. 159–162.
- 109. Levskii, L.K. Isotopic-geochemical study of zircons from metabasites of the Kontokki dike complex: Age of regional metamorphism in the Kostomuksha structure / L.K. Levskii, S.G. Skublov, I.M. Gembitskaya // Petrology. – 2009. – V. 17, № 7. – P. 669–683.
- 110. Lobach-Zhuchenko, S.B. The long (3.7–2.1 Ga) and multistage evolution of the Bug Granulite–Gneiss Complex, Ukrainian Shield, based on the SIMS U–Pb ages and geochemistry of zircons from a single sample / S.B. Lobach-Zhuchenko, S.K. Baltybaev, Y.S. Egorova [et al.] // Geological Society, London, Special Publications. 2017. V. 449, №. 1. P. 175–206.
- 111. Maas, R. The Earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia / R. Maas, P.D. Kinny, I.S. Williams [et al.] // Geochimica et Cosmochimica Acta. 1992. V. 56, № 3. P. 1281–1300.
- 112. McDonough, W.F. The composition of the Earth / W.F. McDonough, S.-s. Sun
 // Chemical geology. 1995. V. 120, № 3-4. P. 223–253.
- McKay, M.P. Tectonic stress regime recorded by zircon Th/U / M.P. McKay, Jr
 W.T. Jackson, A.M. Hessler // Gondwana Research. 2018. V. 57. P. 1–9.
- 114. McLennan, S.M. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust / S.M. McLennan, W.B. Nance, S.R.

Taylor // Geochimica et Cosmochimica Acta. – 1980. – V. 44, № 11. – P. 1833– 1839.

- 115. McLennan, S.M. Samarium/neodymium elemental and isotopic systematics in sedimentary rocks / S.M. McLennan, S. Hemming // Geochimica et Cosmochimica Acta. – 1992. – V. 56, №. 3. – P. 887–898.
- 116. Mikhalsky, E.V. The geological composition of the hidden Wilhelm II Land in East Antarctica: SHRIMP zircon, Nd isotopic and geochemical studies with implications for Proterozoic supercontinent reconstructions / E.V. Mikhalsky, B.V. Belyatsky, S.L. Presnyakov [et al.] // Precambrian Research. – 2015. – V. 258. – P. 171–185.
- 117. Mikhalsky, E.V. Refined geological history of the polyphase plutonometamorphic complex in the Thala Hills area (Enderby Land, East Antarctica) from zircon SHRIMP dating and implications for Neoproterozoic amalgamation of Gondwanaland / E.V. Mikhalsky, D. Krylov, S.G. Skublov // Geological Society, London, Special Publications. 2017. V. 457, № 1. P. 7–36.
- 118. Nance, W.B. Rare earth element patterns and crustal evolution I. Australian post-Archean sedimentary rocks / W.B. Nance, S.R. Taylor // Geochimica et Cosmochimica Acta. 1976. V. 40, № 12. P. 1539–1551.
- 119. Nanoscale processes of trace element mobility in metamorphosed zircon / E. M. Peterman, S.M. Reddy, D.W. Saxey [et al.] // Contributions to Mineralogy and Petrology. 2019. V. 174, № 11. P. 1–29.
- 120. Nehring, F. Trace element partitioning in the granulite facies / F. Nehring, S.F. Foley, P. Hölttä // Contributions to Mineralogy and Petrology. 2010. V. 159, № 4. P. 493–519.
- 121. Nengzhong, L. Zircon U-Pb age, trace element, and Hf isotope evidence for paleoproterozoic granulite-facies metamorphism and Archean crustal remnant in the Dabie orogen / L. Nengzhong, W. Yuanbao // Journal of China University of Geosciences. – 2008. – V. 19, № 2. – P. 110–134.

- 122. O'connor, J.T. A classification for quartz-rich igneous rocks / J. T. O'connor // Geol. Surv. Prof. Pap. – 1965. – V. 525. – P. 79–84.
- 123. Oh, C.W. A petrogenetic grid for eclogite and related facies under high-pressure metamorphism / W.C. Oh, J.G. Liou // Island Arc. – 1998. – V. 7, № 1-2. – P. 36– 51.
- 124. Orejana, D. Geochronology and trace element chemistry of zircon and garnet from granulite xenoliths: constraints on the tectonothermal evolution of the lower crust under central Spain / D. Orejana, C. Villaseca, R.A. Armstrong, T.E. Jeffries // Lithos. – 2011. – V. 124, № 1-2. – P. 103–116.
- 125. Pearce, J.A. A user's guide to basalt discrimination diagrams / J. A. Pearce // Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes. – 1996. – V. 12. – P. 79–113.
- 126. Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust / J.A. Pearce // Lithos. – 2008. – V. 100, № 1–4. – P. 14–48.
- 127. Pearce, J.A. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks / J.A. Pearce, N.B. W. Harris, A.G. Tindle // Journal of petrology. – 1984. – V. 25, № 4. – P. 956–983.
- 128. Peck, W.H. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ¹⁸O continental crust and oceans in the Early Archean / W.H. Peck, J.W. Valley, S.A. Wilde, C.M. Graham // Geochimica et Cosmochimica Acta. 2001. V. 65, № 22. P. 4215–4229.
- 129. Pidgeon, R.T. Zircons: What we need to know / R. T. Pidgeon // Journal of the Royal Society of Western Australia. – 1996. – V. 79. – P. 119–122.
- 130. Richard, P. ¹⁴³Nd/¹⁴⁶Nd, a natural tracer: an application to oceanic basalts / P. Richard, N. Shimizu, C.J. Allegre // Earth and Planetary Science Letters. 1976. V. 31, № 2. P. 269–278.

- 131. Roberts, N.M.W. The zircon archive of continent formation through time / N.
 M. W. Roberts, C. J. Spencer // Geological Society, London, Special Publications.
 2015. V. 389, № 1. P. 197–225.
- 132. Rosen, O.M. Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment / O.M. Rosen, K.C. Condie, L.M. Natapov, A.D. Nozhkin // Developments in Precambrian geology. – Elsevier, 1994. – V. 11. – P. 411–459.
- 133. Rubatto, D. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia / D. Rubatto, I.S. Williams, I.S. Buick // Contributions to Mineralogy and Petrology. – 2001. – V. 140, № 4. – P. 458–468.
- 134. Rubatto, D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism / D. Rubatto // Chemical geology. – 2002. – V. 184, № 1-2. – P. 123–138.
- 135. Rudnick, R.L. Nature and composition of the continental crust: a lower crustal perspective / R. L. Rudnick, D.M. Fountain // Reviews of geophysics. 1995. V. 33, № 3. P. 267–309.
- 136. Schaltegger, U. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence / U. Schaltegger, C.M. Fanning, D. Gunther [et al.] // Contributions to Mineralogy and Petrology. 1999. V. 134, №. 2. P. 186–201.
- 137. Shatsky, V.S. Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton) / V.S. Shatsky, V.G. Malkovets, E.A. Belousova [et al.] // Precambrian Research. – 2018. – V. 305. – P. 125–144.
- 138. Shatsky, V.S. The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: Coupled or decoupled? / V.S. Shatsky, Q. Wang, S.Yu. Skuzovatov // Precambrian Research. – 2019. – V. 332. – P. 105388.
- Scherer, E. Calibration of the lutetium-hafnium clock / E. Schere, C. Münker, K. Mezger // Science. – 2001. – V. 293, № 5530. – P. 683-687.
- 140. Scherer, E. Lu-Hf garnet geochronology: closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions / E. Scherer, K.L.

Cameron, J. Blichert-Toft // Geochimica et Cosmochimica Acta. – 2000. – V. 64, № 19. – P. 3413–3432.

- 141. Schulz, B. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement / B. Schulz, R. Klemd, H. Brätz // Geochimica et Cosmochimica Acta. 2006. V. 70, № 3. P. 697–710.
- 142. Spencer, C.J. Growth, destruction, and preservation of Earth's continental crust / C.J. Spencer, N.M.W. Roberts, M. Santosh // Earth-Science Reviews. 2017. V. 172. P. 87–106.
- 143. Sun, S.-s. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / S.-s. Sun, W.F. McDonough // Geological Society, London, Special Publications. – 1989. – V. 42, № 1. – P. 313–345.
- 144. Takamura, Y. U–Pb geochronology and REE geochemistry of zircons in mafic granulites from the Lützow-Holm complex, East Antarctica: Implications for the timing and P–T path of post-peak exhumation and Antarctica–Sri Lanka correlation / Y. Takamura, T. Tsunogae, Y. Tsutsumi // Precambrian Research. – 2020. – V. 348. – P. 105850.
- 145. Taylor, R.J.M. Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India / R.J.M. Taylor, C. Clark, I.C.W. Fitzsimons [et al.] // Contributions to Mineralogy and Petrology. 2014. V. 168, № 2. P. 1044.
- 146. Trail, D. Li zoning in zircon as a potential geospeedometer and peak temperature indicator / D. Trail, D.J. Cherniak, E.B. Watson [et al.] // Contributions to Mineralogy and Petrology. – 2016. – V. 171, № 3. – P. 25.
- 147. Tichomirowa, M. Resorption, growth, solid state recrystallisation, and annealing of granulite facies zircon–a case study from the Central Erzgebirge, Bohemian Massif / M. Tichomirova, M.J. Whitehouse, L. Nasdala // Lithos. 2005. V. 82, № 1–2. P. 25–50.
- 148. Turkina, O.M. U–Pb (SHRIMP II), Lu–Hf isotope and trace element geochemistry of zircons from high-grade metamorphic rocks of the Irkut terrane, Sharyzhalgay Uplift: Implications for the Neoarchaean evolution of the Siberian

Craton / O.M. Turkina, N.G. Berezhnaya, E.N. Lepekhina, I.N. Kapitonov // Gondwana Research. – 2012. – V. 21, № 4. – P. 801–817.

- 149. Turkina, O.M. Isotope Lu–Hf composition of detrital zircon from paragneisses of the Sharyzhalgai uplift: evidence for the Paleoproterozoic crustal growth / O.M. Turkina, N.G. Berezhnaya, V.P. Sukhorukov // Russian Geology and Geophysics. 2016. V. 57, № 7. P 1016–1026.
- 150. Turkina, O.M. Composition and genesis of garnet in the rocks of Paleoproterozoic gneiss-migmatite complex (Sharyzhalgai uplift, southwestern Siberian craton) / O.M. Turkina, V.P. Sukhorukov // Russian Geology and Geophysics. – 2017. – V. 58, № 6. – P. 674-691.
- 151. Turkina, O.M. U-Pb age of zircon from paragneisses in granulite terrane of the Sharyzhalgai uplift (southwest of the Siberian craton): Evidence for the Archean sedimentation and evolution of continental crust from Eoarchean to Mesoarchean / O.M. Turkina, S.A. Sergeeva, V.P. Sukhorukov, N.V. Rodionov // Russian Geology and Geophysics. – 2017. – V. 58, № 9. – P. 1018–1031.
- 152. Ushikubo, T. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust / T. Ushikubo, N.T. Kita, A.J. Cavosie [et al.] // Earth and Planetary Science Letters. – 2008. – V. 272, № 3-4. – P. 666–676.
- 153. Valley, J.W. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts / J.W. Valley, P.D. Kinny, D.J. Schulz, M.J. Spicuzza // Contributions to mineralogy and petrology. – 1998. – V. 133, № 1. – P. 1–11.
- 154. Valley, J.W. Oxygen isotopes in zircon / J.W. Valley // Reviews in mineralogy and geochemistry. – 2003. – V. 53, № 1. – P. 343–385.
- 155. Valley, J.W. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon / J.W. Valley, J.S. Lackey, A.J. Cavoise [et al.] // Contributions to Mineralogy and Petrology. – 2005. – V. 150. – P. 561–580.
- 156. Vavra, G. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps) / G. Vavra, R. Schmid, D. Gebauer // Contributions to Mineralogy and Petrology. – 1999. – V. 134, № 4. – P. 380–404.

- 157. Wang, Q. New constraints on the Hadean to Proterozoic history of the Jack Hills belt, Western Australia / Q. Wang, S.A. Wilde // Gondwana Research. – 2018. – V. 55. – P. 74–91.
- 158. Wang, X. Hf contents and Zr/Hf ratios in granitic zircons / X. Wang, W.L. Griffin, J. Chen // Geochemical Journal. 2010. V. 44, № 1. P. 65–72.
- 159. Watson, E.B. Crystallization thermometers for zircon and rutile / E. B. Watson,
 D.A. Wark, J.B. Thomas // Contributions to Mineralogy and Petrology. 2006. –
 V. 151, № 4. P. 413–433.
- 160. Watson, E.B. Oxygen diffusion in zircon / E.B. Watson, D.J. Cherniak // Earth and Planetary Science Letters. 1997. V. 148, № 3–4. P. 527–544.
- 161. Watson, E.B. Zircon thermometer reveals minimum melting conditions on earliest Earth / E.B. Watson, T.M. Harrison // Science. 2005. V. 308, № 5723. P. 841–844.
- 162. Wei, C. Calculated phase relations in high-pressure metapelites in the system NKFMASH (Na₂O-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) / C. Wei, R. Powell // Journal of Petrology. – 2004. – V. 45, № 1. – P. 183–202.
- 163. Werner, C.D. Saxonian granulites-igneous or lithogenous. A contribution to the geochemical diagnosis of the original rocks in high-metamorphic complexes / C.
 D. Werner // Contributions to the geology of the Saxonian granulite massif (Sächsisches Granulitgebirge), Zfl-Mitteilungen. 1987. V. 133. P. 221–250.
- 164. Whitehouse, M.J. Dating high-grade metamorphism—constraints from rareearth elements in zircon and garnet / M.J. Whitehouse, J.P. Platt // Contributions to Mineralogy and Petrology. – 2003. – V. 145, № 1. – P. 61–74.
- 165. Wilde, S.A. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago / S.A. Wilde, J.W. Valley, W.H. Peck, C.M. Graham // Nature. – 2001. – V. 409, № 6817. – P. 175–178.
- 166. Williams, I.S. U-Th-Pb geochronology by ion microprobe / I.S. Williams // Reviews in economic geology. – 1998. – V. 7. – P. 1–35.
- 167. Xiang, W. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: Improved zircon-melt distribution coefficients / W. Xiang, W.L.

Griffin, H. Pinyun [et al.] // Acta Geologica Sinica-English Edition. – 2011. – V. 85, N_{2} 1. – P. 164–174.

- 168. Yakymchuk, C. Th/U ratios in metamorphic zircon / C. Yakymchuk, C.L. Kirkland, C. Clark // Journal of Metamorphic Geology. 2018. V. 36, №. 6. P. 715–737.
- 169. Zimmerman, U. The role of U-Pb ages of detrital zircons in sedimentology–An alarming case study for the impact of sampling for provenance interpretation / U. Zimmerman, T. Andersen, M.V. Madland, I.S. Larsen // Sedimentary Geology. 2015. V. 320. P. 38–50.
- 170. Zhang, J.X. Combined rutile–zircon thermometry and U–Pb geochronology: New constraints on Early Paleozoic HP/UHT granulite in the south Altyn Tagh, north Tibet, China / J.X. Zhang, C.G. Mattinson, S.Y. Yu, Y.S. Li // Lithos. – 2014. – V. 200. – P. 241–257.

ПРИЛОЖЕНИЕ А Представительные микрозондовые анализы и кристаллохимические коэффициенты минералов из пород далдынской серии

Таблица А.1 – Представительные микрозондовые анализы и

кристаллохимические коэффициенты пироксенов из биотит-гиперстенового кристаллосланца (обр. 508)

образец				508			
№ точки	0001	0002	0003	0004	0014	0015	24
SiO ₂	52.20	52.61	52.75	52.82	50.95	53.49	52.90
Al_2O_3	1.55	1.38	1.22	1.23	1.42	1.26	1.35
Fe ₂ O ₃	-	-	-	-	1.82	-	-
FeO	25.59	25.08	25.08	24.82	25.69	25.02	25.39
MnO	0.70	0.65	0.73	0.72	0.82	0.56	0.72
MgO	19.49	19.78	19.53	19.90	18.84	19.13	19.22
CaO	0.47	0.37	0.69	0.51	0.64	0.54	0.42
Сумма	100.00	99.87	100.00	100.00	100.18	100.00	100.00
Si	1.978	1.989	1.997	1.996	1.942	2.029	2.007
Al	0.069	0.062	0.055	0.055	0.064	0.056	0.060
Fe ³⁺	0.000	0.000	0.000	0.000	0.052	0.000	0.000
Fe ²⁺	0.811	0.793	0.794	0.784	0.819	0.794	0.806
Mn	0.022	0.021	0.023	0.023	0.026	0.018	0.023
Mg	1.101	1.115	1.102	1.121	1.071	1.082	1.087
Ca	0.019	0.020	0.028	0.021	0.026	0.022	0.017
Сумма	4.00	4.00	4.00	4.00	4.00	4.00	4.00
X _(Mg)	0.569	0.578	0.574	0.581	0.559	0.571	0.567
enstatite	56.36	57.36	56.59	57.52	53.68	56.48	56.24
ferrosilite	42.66	41.87	41.97	41.42	45.01	42.38	42.88
wolla- stonite	0.98	0.77	1.44	1.06	1.31	1.15	0.88
Pyroxene group	Quad						
Название пироксена	Энстатит						

Примечание. Прочерк - содержание элемента ниже порога чувствительности. $X_{Mg} = Mg^{2+}/(Mg^{2+}+Fe^{2+})$
№ точки	009	014	017	026	027	036	038	045	049	054	056	057	061	062
SiO ₂	51.63	51.11	50.81	50.90	50.85	51.19	50.57	51.46	50.54	51.80	51.23	51.07	50.95	51.38
TiO ₂	0.04	0.06	0.15	0.00	0.07	0.00	0.00	0.33	0.35	0.24	0.46	0.2	0.25	0.28
Al_2O_3	0.93	1.27	1.17	0.87	1.09	0.99	1.13	2.37	2.89	2.52	2.68	2.38	2.25	2.77
Fe_2O_3	-	-	-	1.30	2.51	0.39	1.90	0.76	3.22	0.00	0	1.98	2.87	0.3
FeO	28.98	29.30	30.01	28.38	26.93	29.04	27.91	11.63	9.51	12.15	12.19	10.78	9.58	11.67
MnO	0.58	0.54	0.63	0.60	0.56	0.47	0.60	0.25	0.44	0.08	0.44	0.29	0.30	0.28
MgO	17.28	17.05	16.56	17.40	17.34	17.32	17.53	11.37	11.01	11.19	10.96	11.86	11.54	11.17
CaO	0.56	0.67	0.69	0.67	0.51	0.64	0.55	21.43	21.61	21.62	21.7	21.25	22.00	21.76
Na ₂ O	-	-	-	-	0.39	0.00	0.00	0.48	0.75	0.40	0.35	0.39	0.54	0.42
Сумма	100.00	100.00	100.02	100.12	100.25	100.04	100.19	100.08	100.32	100.00	100.01	100.2	100.29	100.03
Si	1.989	1.971	1.967	1.961	1.952	1.972	1.947	1.945	1.908	1.958	1.941	1.928	1.922	1.941
Ti	0.001	0.002	0.004	0.000	0.002	0.000	0.000	0.009	0.010	0.007	0.013	0.006	0.007	0.008
Al	0.042	0.057	0.053	0.040	0.049	0.045	0.051	0.105	0.128	0.113	0.120	0.105	0.100	0.124
Fe ³⁺	0.000	0.000	0.005	0.038	0.073	0.011	0.055	0.022	0.091	0.000	0.000	0.056	0.082	0.009
Fe^{2+}	0.934	0.945	0.966	0.915	0.864	0.936	0.898	0.367	0.300	0.384	0.386	0.340	0.302	0.369
Mn	0.019	0.018	0.021	0.020	0.018	0.015	0.020	0.008	0.014	0.003	0.014	0.009	0.01	0.009
Mg	0.992	0.980	0.956	1.000	0.992	0.995	1.006	0.641	0.619	0.631	0.619	0.667	0.649	0.629
Ca	0.023	0.028	0.029	0.028	0.021	0.026	0.023	0.868	0.874	0.876	0.881	0.859	0.889	0.881
Na	-	-	-	-	0.029	-	-	0.035	0.055	0.029	0.026	0.029	0.039	0.031
Сумма	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
X _(Mg)	0.510	0.505	0.492	0.517	0.529	0.511	0.523	0.630	0.663	0.620	0.607	0.656	0.675	0.625
enstatite	50.42	49.74	48.37	50.00	50.41	50.15	50.25	33.62	33.62	33.31	32.58	34.53	33.6	33.18
ferrosilite	48.40	48.85	50.18	48.62	48.53	48.51	48.61	20.84	21.37	20.43	21.07	21.00	20.37	20.37
wolla- stonite	1.17	1.40	1.45	1.38	1.07	1.33	1.13	45.54	46.01	46.26	46.36	44.47	46.03	46.45
Название пироксена	Энста- тит	Энста- тит	Ферро- силит	Энста- тит	Энста- тит	Энста- тит	Энста- тит	Аl Дио- псид	А1 Дио- псид	Аl Дио- псид	Аl Дио- псид	Al Авгит	Аl Дио- псид	А1 Дио- псид

Таблица А.2 – Представительные микрозондовые анализы и кристаллохимические коэффициенты пироксенов из двупироксенового плагиогнейса (обр. 169-1)

№ обр.			1	66					1	74		
№ точки	0107	0081	0016	0011	0067	0075	0004		0012	0021		0029
SiO ₂	53.0	52.7	52.6	52.4	52.2	52.2	51.7	50.7	50.0	50.5	50.8	51.0
Al_2O_3	1.99	1.96	2.07	2.37	2.11	2.09	0.81	1.14	1.28	1.06	1.32	0.76
Fe ₂ O ₃	-	-	-	-	0.10	-	0.81	0.20	2.27	1.67	0.57	0.69
FeO	22.4	23.1	23.0	22.9	23.3	23.7	29.5	30.6	28.9	28.9	29.4	29.5
MnO	0.36	0.29	0.37	0.52	0.41	0.41	0.57	0.69	0.71	0.57	0.73	0.71
MgO	21.8	21.6	21.6	21.6	21.5	21.2	17.1	16.0	16.6	17.0	16.8	16.9
CaO	0.38	0.37	0.40	0.30	0.37	0.33	0.34	0.60	0.46	0.48	0.48	0.47
Сумма	100.00	100.00	100.00	100.01	100.00	100.00	100.00	100.02	100.23	100.17	100.06	100.00
Si	1.975	1.966	1.963	1.953	1.952	1.956	1.996	1.971	1.938	1.952	1.962	1.973
Al	0.088	0.086	0.091	0.104	0.092	0.092	0.036	0.052	0.058	0.048	0.060	0.034
Fe ³⁺	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.006	0.066	0.048	0.017	0.020
Fe ²⁺	0.698	0.721	0.718	0.713	0.728	0.743	0.951	0.994	0.937	0.935	0.950	0.954
Mn	0.011	0.009	0.012	0.016	0.013	0.013	0.019	0.023	0.023	0.019	0.024	0.023
Mg	1.213	1.202	1.200	1.201	1.197	1.183	0.984	0.929	0.958	0.978	0.968	0.976
Ca	0.015	0.015	0.016	0.012	0.015	0.013	0.014	0.025	0.019	0.020	0.020	0.019
Сумма	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
X(Mg)	0.631	0.622	0.622	0.622	0.618	0.610	0.504	0.477	0.499	0.506	0.498	0.500
enstatite	62.61	61.72	61.69	61.82	61.21	60.60	50.00	46.99	47.80	48.89	48.92	48.98
ferrosilite	36.61	37.52	37.49	37.56	38.04	38.72	49.29	51.75	51.25	50.11	50.07	50.05
wollastonite	0.78	0.76	0.82	0.62	0.76	0.68	0.71	1.26	0.95	0.99	1.00	0.98
Pyroxene group	Quard											

Таблица А.3 – Представительные микрозондовые анализы и кристаллохимические коэффициенты пироксеново из гранат-ортопироксенового амфиболита (обр. 166) и гранат-ортопироксенового плагиокристаллосланца (обр. 174)

N⁰	rim	core	rim	rim	core	rim	rim	rim	core	rim	rim	core	rim
точки	0047	0050	0052	0001	0003	0005	0006	27	29	34	62	64	66
SiO ₂	38.8	38.7	38.6	38.9	38.3	38.3	38.6	39.1	38.6	39.4	38.7	38.3	38.7
TiO ₂	-	-	-	-	-	-	-	-	-	-	-	-	-
Al_2O_3	21.7	22.2	22.0	21.7	22.0	22.2	22.2	22.0	22.4	21.6	22.5	22.3	21.8
FeO	25.4	24.3	25.2	25.2	24.5	24.8	25.3	24.4	24.0	24.5	25.1	25.0	26.0
MnO	1.24	0.99	1.20	1.15	1.12	0.92	1.05	1.18	1.01	1.03	1.27	0.98	1.22
MgO	6.56	7.45	6.73	6.86	7.61	7.15	6.76	6.98	7.78	7.45	6.44	6.98	6.55
CaO	6.26	6.34	6.33	6.22	6.51	6.62	6.06	6.28	6.21	6.00	5.98	6.36	5.82
Сумма	100.00	100.00	100.00	99.99	100.00	100.00	99.99	99.99	99.99	100.00	100.01	100.00	100.00
Si	3.01	2.98	2.98	3.01	2.95	2.95	2.99	3.02	2.96	3.04	3.00	2.96	3.00
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al	1.99	2.02	-	-	1.99	-	-	-	-	-	-	-	-
Al ^{IV}	0.00	0.02	0.02	-	0.05	0.05	0.01	-	0.04	-	0.00	0.04	
Al^{VI}	1.99	2.00	1.99	1.98	1.94	1.97	2.01	2.00	1.99	1.97	2.05	1.99	1.99
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00
Fe ³⁺	1.65	0.02	0.03	0.00	0.11	0.07	0.00	0.00	0.05	-	-	0.05	0.00
Fe ²⁺	0.00	1.54	1.60	1.63	1.47	1.52	1.64	1.58	1.50	1.58	1.63	1.57	1.68
Mn	0.08	0.06	0.08	0.08	0.07	0.06	0.07	0.00	0.07	0.07	0.08	0.06	0.08
Mg	0.76	0.85	0.78	0.78	0.87	0.82	0.78	0.80	0.89	0.86	0.74	0.80	0.75
Ca	0.52	0.52	0.52	0.52	0.54	0.55	0.50	0.52	0.51	0.50	0.50	0.53	0.48
Сумма	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Sps	2.71	2.15	2.62	2.51	2.43	2.00	2.29	2.57	2.19	2.24	2.78	2.14	2.67
Prp	24.6	28.5	25.9	25.0	29.1	27.4	26.0	26.8	29.7	28.5	24.8	26.8	24.7
Alm	54.8	51.3	53.5	54.3	48.9	50.8	54.6	52.6	49.9	52.6	54.3	52.2	56.1
Grs	17.1	17.4	17.5	17.1	16.8	18.2	16.8	17.3	17.0	14.9	16.5	17.5	16.0
And	0.00	0.00	0.02	0.06	1.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Таблица А.4 – Представительные микрозондовые анализы и кристаллохимические коэффициенты гранатов из гранат-ортопироксенового амфиболита (обр. 166)

Примечание. Прочерк - содержание элемента ниже порога чувствительности.

Таблица А.5 – Представительные микрозондовые анализы и кристаллохимические коэффициенты амфиболов из

№ точки	043	046	052	050
SiO ₂	42.47	41.54	41.1	40.87
TiO ₂	2.29	2.56	2.19	2.71
Al ₂ O ₃	12.20	12.51	12.97	12.55
Fe ₂ O ₃	-	-	-	-
FeO	18.71	18.58	19.2	19.09
MnO	0.20	0.02	0.03	0.20
MgO	8.87	8.83	9.3	9.08
CaO	11.78	12.00	11.56	11.68
Na ₂ O	1.41	1.49	1.11	1.60
K ₂ O	1.92	2.18	2.26	1.98
Cl	0.35	0.28	0.29	0.25
Сумма	100.20	99.99	99.99	100.01
Si	6.306	6.209	6.109	6.109
Ti	0.256	0.288	0.245	0.305
Al	2.135	2.204	2.273	2.211
Fe ³⁺	0.206	0.128	0.441	0.257
Fe ²⁺	2.117	2.194	1.949	2.129
Mn	0.025	0.003	0.004	0.025
Mg	1.963	1.967	2.054	2.023
Ca	1.874	1.922	1.841	1.871
Na	0.406	0.432	0.320	0.464
K	0.364	0.416	0.429	0.378
Сумма	15.65	15.76	15.67	15.77
X _(Mg)	0.481	0.473	0.513	0.487
F	Ca	Ca	Ca	Ca
1 руппа	амфиболы	амфиболы	амфиболы	амфиболы
Название	Ферро-	Ферро-	Магнезио-	Ферро-
Tusbuint	паргасит	паргасит	гастингсит	паргасит

двупироксенового плагиогнейса (обр. 169-1)

№ точки	7														
SiO ₂	44.24	44.51	43.09	43.60	43.51	43.39	44.10	43.16	43.17	45.37	42.65	43.26	42.94	44.13	44.02
TiO ₂	1.31	1.11	1.24	1.39	1.18	1.11	0.87	1.09	1.24	0.82	1.18	0.95	1.11	1.00	0.73
Al_2O_3	13.62	14.06	14.22	14.04	13.38	14.64	14.39	14.83	14.91	14.65	15.13	14.75	14.83	13.17	14.51
FeO	12.35	12.12	12.93	13.22	13.63	12.91	13.06	12.88	12.14	11.30	13.18	13.02	13.38	13.45	12.11
MnO	0.03	0.00	0.10	0.11	0.10	0.19	0.02	0.25		0.03	0.17	0.11	0.10	0.13	0.11
MgO	13.58	13.53	13.33	12.63	13.00	12.79	12.76	12.35	13.11	14.00	12.83	12.87	12.17	13.12	13.54
CaO	11.77	11.83	12.08	11.89	11.76	12.12	11.77	12.04	12.08	10.92	11.81	11.91	12.08	12.06	12.10
Na ₂ O	1.79	1.64	1.75	1.83	2.13	1.68	1.74	2.11	2.05	1.78	1.81	1.86	2.02	1.80	1.77
K ₂ O	1.31	1.21	1.25	1.30	1.31	1.17	1.30	1.28	1.30	1.11	1.24	1.27	1.37	1.14	1.10
Сумма	100.00	100.01	99.99	100.01	100.00	100.00	100.01	99.99	100.00	99.98	100.00	100.00	100.00	100.00	99.99
Si	6.301	6.318	6.152	6.251	6.256	6.197	6.293	6.198	6.172	6.345	6.091	6.183	6.183	6.316	6.251
Ti	0.140	0.119	0.133	0.150	0.128	0.119	0.093	0.118	0.133	0.086	0.127	0.102	0.120	0.108	0.078
Al	2.286	2.352	2.393	2.372	2.267	2.464	2.420	2.510	2.512	2.415	2.547	2.485	2.517	2.222	2.428
Fe ³⁺	0.332	0.328	0.487	0.283	0.332	0.381	0.327	0.241	0.244	0.590	0.497	0.385	0.223	0.384	0.398
Fe ²⁺	1.139	1.111	1.057	1.302	1.306	1.161	1.231	1.305	1.207	0.731	1.078	1.172	1.388	1.226	1.041
Mn	0.004		0.012	0.013	0.012	0.023	0.002	0.030		0.004	0.021	0.013	0.012	0.016	0.013
Mg	2.844	2.863	2.837	2.699	2.786	2.723	2.714	2.644	2.794	2.919	2.731	2.742	2.612	2.799	2.866
Ca	1.796	1.799	1.848	1.827	1.812	1.855	1.800	1.852	1.850	1.636	1.807	1.824	1.864	1.849	1.841
Na	0.494	0.451	0.484	0.509	0.594	0.465	0.481	0.587	0.568	0.483	0.501	0.515	0.564	0.499	0.487
Κ	0.238	0.219	0.228	0.238	0.240	0.213	0.237	0.234	0.237	0.198	0.226	0.232	0.252	0.208	0.199
Сумма	15.57	15.56	15.63	15.64	15.73	15.60	15.60	15.72	15.72	15.41	15.63	15.65	15.74	15.63	15.60
X _(Mg)	0.714	0.720	0.729	0.675	0.681	0.701	0.688	0.670	0.698	0.800	0.717	0.701	0.653	0.695	0.734
Название	Парга-	Черма-	Парга-	Парга-	Парга-	Парга-	Парга-								
inspanne	сит	КИТ	сит	сит	сит	сит	сит								

Таблица А.6 – Представительные микрозондовые анализы и кристаллохимические коэффициенты амфиболов

из гранат-ортопироксенового амфиболита (обр. 166)

149

Таблица А.7 – Содержание редких и редкоземельных элементов (ppm) в гранатах из гранат-ортопироксенового амфиболита (обр. 166) и гранат-ортопироксенового плагиокристаллосланца (обр. 174)

образец		10	56			11	74	
№ точки	2	5	11	12	22	23	28	29
La	0.02	0.01	0.05	0.03	0.02	0.05	0.05	0.02
Ce	0.14	0.15	0.11	0.08	0.29	0.19	0.22	0.19
Pr	0.05	0.05	0.03	0.03	0.15	0.11	0.10	0.11
Nd	0.74	0.83	0.46	0.33	2.78	1.73	2.02	2.29
Sm	0.65	0.81	0.53	0.53	3.73	3.33	3.36	3.47
Eu	0.69	0.70	0.50	0.56	1.42	1.13	1.19	1.24
Gd	2.50	2.82	2.23	2.38	10.8	9.6	10.3	10.9
Dy	8.64	8.54	7.67	7.43	21.1	24.1	29.3	26.6
Er	13.2	11.9	12.2	9.7	18.5	28.1	39.6	28.9
Yb	19.4	16.0	17.8	13.8	25.6	45.0	66.8	43.9
Lu	2.92	2.18	2.47	1.80	3.57	6.00	8.99	5.91
Ti	151	183	102	108	508	248	292	354
V	111	109	98	99	120	121	113	123
Cr	54.1	50.5	47.9	51.3	49.5	44.5	68.4	75.9
Sr	0.61	0.59	0.42	0.59	0.38	0.54	0.31	0.28
Y	91.3	80.0	84.9	72.7	177	227	288	238
Zr	19.0	27.2	13.5	13.1	21.8	13.0	15.4	16.6
Nb	0.02	0.01	0.01	0.01	0.05	0.04	0.04	0.02
Hf	2.59	2.40	2.27	2.42	7.05	8.20	9.19	8.00
ΣREE	49.0	44.0	44.0	36.6	88.0	119	162	124
ΣHREE	46.7	41.4	42.3	35.1	79.6	113	155	116
Eu/Eu*	1.65	1.41	1.41	1.50	0.68	0.61	0.62	0.61
(La/Yb) _N	0.0008	0.0006	0.0021	0.0012	0.0006	0.0007	0.0005	0.0004
$(\overline{\text{Sm/Nd}})_{N}$	2.72	3.02	3.52	4.94	4.14	5.96	5.12	4.67

образец			1	.69-1				1′	74			10	56	
№ точки	14	15	16	17	19	20	26	27	32	33	7	8	9	10
La	0.49	0.67	0.15	29.2	24.8	33.6	0.02	0.01	0.08	0.02	0.01	0.01	0.02	0.01
Ce	1.02	1.85	0.46	124	104	131	0.08	0.05	0.06	0.04	0.03	0.05	0.02	0.03
Pr	0.14	0.21	0.05	22.0	19.7	24.4	0.01	0.01	0.01	0.01	bdl	0.00	0.00	0.01
Nd	0.64	0.91	0.39	116	105	129	0.04	0.05	0.09	0.05	0.03	0.02	0.02	0.02
Sm	0.14	0.27	0.08	28.8	25.0	30.1	0.04	0.05	0.05	0.04	0.03	-	0.02	0.02
Eu	0.02	0.04	0.02	2.02	1.74	2.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01
Gd	0.21	0.23	0.13	18.7	18.1	24.0	0.05	0.04	0.03	0.05	0.01	0.04	0.01	0.01
Dy	0.22	0.33	0.35	18.7	17.2	21.4	0.09	0.09	0.08	0.08	0.01	0.02	0.02	0.01
Er	0.31	0.40	0.40	9.38	7.68	9.62	0.08	0.08	0.14	0.10	0.04	0.02	0.02	0.02
Yb	0.66	0.80	0.97	8.11	7.49	7.99	0.22	0.25	0.31	0.33	0.02	0.02	0.03	0.02
Lu	0.10	0.12	0.14	1.33	1.20	1.45	0.03	0.05	0.04	0.04	0.00	0.00	0.01	0.01
Ti	349	393	412	1642	1441	1910	487	619	515	596	211	204	214	220
V	71.2	85.6	79.1	310	273	348	57.9	83.3	68.9	77.3	80.2	75.3	80.9	84.8
Cr	142	152	148	147	141	142	151	156	146	150	156	167	163	169
Sr	2.71	3.67	0.54	22.7	19.9	22.0	0.50	0.26	0.57	0.25	0.40	1.33	1.17	1.36
Y	1.87	2.50	3.09	85.5	74.4	95.2	0.59	0.60	0.79	0.82	0.10	0.09	0.09	0.11
Zr	0.98	0.92	0.87	48.1	42.1	57.5	2.44	4.13	2.53	2.88	2.57	2.05	1.73	2.14
Nb	0.08	0.04	0.03	0.10	0.09	0.13	0.03	0.04	0.04	0.04	0.03	0.01	0.03	0.03
Hf	0.09	0.13	0.16	6.85	5.71	7.54	0.08	0.08	0.12	0.10	0.04	0.04	0.05	0.07
ΣREE	3.95	5.85	3.14	378	332	414	0.67	0.68	0.92	0.77	0.20	0.20	0.17	0.16
Eu/Eu*	0.44	0.52	0.74	0.26	0.25	0.23	0.86	0.51	1.01	0.66	1.59	-	0.56	1.32
(La/Yb) _N	0.51	0.57	0.11	2.44	2.25	2.86	0.06	0.03	0.17	0.04	0.92	0.93	1.15	1.80
(Sm/Nd) _N	0.69	0.90	0.63	0.77	0.73	0.72	2.53	3.11	1.85	2.50	0.28	0.32	0.35	0.26

Таблица А.8 – Содержание редких и редкоземельных элементов (ppm) в пироксенах из двупироксенового плагиогнейса (обр. 169-1), гранат-ортопироксенового плагиокристаллосланца (обр. 174) и гранат-ортопироксенового амфиболита (обр. 166)

Примечание. Прочерк - содержание элемента ниже порога чувствительности.

						1					
образец			166			16	9-1		1	74	-
№ точки	1	3	4	6	13	18	21	24	25	30	31
La	33.8	34.0	34.2	32.5	33.7	132.8	132.4	33.4	36.7	37.9	35.7
Ce	71.3	71.1	71.7	62.5	66.5	493	505	109	125	126	122
Pr	7.65	7.55	7.74	7.21	7.78	85.1	84.9	19.3	21.4	21.8	21.2
Nd	29.3	29.2	28.3	28.9	30.5	431	424	102	113	113	107
Sm	5.21	5.47	5.19	4.60	5.11	90.7	91.2	23.3	24.2	24.1	23.7
Eu	2.02	2.06	2.06	1.80	2.10	5.99	6.76	4.13	4.20	4.32	4.64
Gd	4.70	3.49	3.44	4.03	4.51	73.2	80.1	21.1	20.1	18.2	16.7
Dy	3.04	3.19	3.17	2.48	3.58	60.1	58.9	12.6	13.4	15.1	14.8
Er	1.21	1.52	1.15	1.10	2.02	27.1	28.2	4.99	6.28	5.94	5.51
Yb	0.30	0.86	0.79	0.50	0.97	20.3	19.6	2.99	4.80	4.01	4.29
Lu	0.14	0.16	0.09	0.13	0.19	4.18	4.03	0.87	1.03	0.97	0.87
Ti	8749	8405	8347	8355	8694	17682	16515	17997	18248	20704	20302
V	509	504	487	497	503	613	664	658	700	518	495
Cr	112	115	101	101	109	148	153	147	161	152	133
Sr	47.1	38.1	38.4	41.9	41.1	92.9	93.3	141	185	189	211
Y	11.6	13.4	13.4	11.0	16.5	283	278	50.9	61.8	61.4	61.0
Zr	92.4	97.2	100	89.1	83.3	64.3	74.3	127	172	156	171
Nb	4.99	4.97	5.04	4.79	5.05	31.6	30.0	23.3	25.7	28.9	28.1
Hf	2.29	2.38	2.78	2.20	2.64	17.3	16.9	7.58	8.98	8.51	8.28
ΣREE	159	159	158	146	157	1423	1436	334	370	371	357
Eu/Eu*	1.24	1.44	1.49	1.27	1.33	0.22	0.24	0.57	0.58	0.63	0.71
(La/Yb) _N	76.1	26.9	29.5	44.6	23.7	4.45	4.58	7.59	5.19	6.42	5.65
(Sm/Nd) _N	0.55	0.58	0.57	0.49	0.52	0.65	0.66	0.71	0.66	0.66	0.68

Таблица А.9 – Содержание редких и редкоземельных элементов (ppm) в амфиболах из гранат-ортопироксенового амфиболита (обр. 166), двупироксенового плагиогнейса (обр. 169-1) и гранат-ортопироксенового плагиокристаллосланца (обр. 174)

ПРИЛОЖЕНИЕ Б Результаты U-Pb (SHRIMP-II) анализов циркона

Таблица Б.1 – Результаты U-Pb (SHRIMP-II) анализов циркона из биотит-гиперстенового кристаллосланца (обр. 508)

Точка анализа	²⁰⁶ Pbc, %	U, ppm	Th, ppm	$\frac{^{232}\text{Th}}{^{238}\text{U}}$	²⁰⁶ Pb* , ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb , млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ P b	±%	(1) ²⁰⁷ Pb*/ ²⁰⁶ P b*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
9.1		269	58.8	0.23	78.5	1885 ± 22	1968 ± 19	+5	2.94	1.4	0.121	1.1	5.66	1.7	0.340	1.4	0.786
13.1	0.00	154	8.00	0.05	46.9	1951 ± 28	1978 ± 25	+2	2.83	1.6	0.121	1.4	5.92	2.1	0.354	1.6	0.734
2.1		197	36.0	0.19	60.0	1953 ± 27	1974 ± 27	+1	2.83	1.6	0.121	1.5	5.91	2.2	0.354	1.6	0.891
15.1	0.05	346	32.6	0.10	105	1955 ± 22	1961 ± 18	+0	2.82	1.3	0.120	1.0	5.88	1.6	0.354	1.3	0.692
1.1	0.00	313	170	0.56	95.4	1960 ± 35	1987 ± 29	+2	2.81	2.1	0.122	1.6	5.98	2.6	0.355	2.1	0.791
10.1		933	7.47	0.01	286	1965 ± 19	1977 ± 10	+1	2.81	1.1	0.121	0.6	5.97	1.3	0.356	1.1	0.746
5.1	0.00	234	46.4	0.21	71.6	1968 ± 26	1994 ± 21	+1	2.80	1.5	0.123	1.2	6.03	1.9	0.357	1.5	0.842
11.1	0.05	584	38.2	0.07	180	1976 ± 26	1978 ± 18	+0	2.79	1.5	0.121	1.0	6.01	1.9	0.359	1.5	0.859
6.1	0.16	93.7	41.7	0.46	34.0	2271 ± 38	2465 ± 30	+9	2.37	2.0	0.161	1.8	9.37	2.6	0.422	2.0	0.857
18.1	0.00	52.5	33.3	0.66	20.7	2434 ± 47	2610 ± 28	+8	2.18	2.3	0.175	1.7	11.1	2.9	0.459	2.3	0.788
6.2	0.00	100	52.4	0.54	40.5	2499 ± 36	2709 ± 19	+9	2.11	1.8	0.186	1.1	12.2	2.1	0.474	1.8	0.892
7.1		191	91.0	0.49	80.3	2572 ± 31	2734 ± 14	+7	2.04	1.5	0.189	0.9	12.8	1.7	0.490	1.5	0.831
16.1	0.08	101	52.0	0.53	46.0	2747 ± 40	2884 ± 18	+6	1.88	1.8	0.207	1.1	15.2	2.1	0.531	1.8	0.894
17.1	0.00	77.2	47.2	0.63	36.2	2809 ± 44	2900 ± 19	+4	1.83	2.0	0.209	1.2	15.8	2.3	0.546	2.0	0.767
14.1	0.00	171	98.7	0.59	82.3	2863 ± 35	2984 ± 13	+5	1.79	1.5	0.221	0.8	17.0	1.7	0.559	1.5	0.888
4.1	0.03	200	144	0.75	102	3000 ± 34	3000 ± 24	-0	1.69	1.4	0.223	1.5	18.2	2.1	0.593	1.4	0.799
12.1	0.00	182	141	0.80	93.6	3019 ± 36	3002 ± 12	-1	1.67	1.5	0.223	0.7	18.4	1.7	0.597	1.5	0.854
8.1	0.04	163	171	1.08	83.8	3021 ± 38	3028 ± 15	+0	1.67	1.6	0.227	0.9	18.7	1.8	0.598	1.6	0.857
3.1	0.00	175	151	0.89	90.6	3040 ± 36	3005 ± 12	-1	1.66	1.5	0.223	0.7	18.6	1.6	0.602	1.5	0.812

Примечание. Рbс и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных возрастов приводятся на уровне 2σ.

Точка анализ а	²⁰⁶ Pbc, %	U, ppm	Th, ppm	$\frac{\frac{232T}{\underline{h}}}{\frac{238}{\underline{U}}}$	²⁰⁶ Pb* , ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U , млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb , млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ P b	± %	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb *	± %	(1) ²⁰⁷ Pb*/ ²³⁵ U	± %	(1) ²⁰⁶ Pb*/ ²³⁸ U	± %	Rho
2.1	0.08	314	187	0.61	95.3	1948 ± 15	1928 ± 18	-1	2.835	0.9	0.1181	1.0	5.74	1.3	0.353	0.9	0.654
15.1	0.01	1017	148	0.15	460	2727 ± 16	2697 ± 7	-1	1.899	0.7	0.1848	0.4	13.4	0.9	0.527	0.7	0.874
18.1	0.00	176	43.4	0.25	67.6	2380 ± 19	2728 ± 15	15	2.239	0.9	0.1884	0.9	11.6	1.3	0.447	0.9	0.727
20.1	0.00	367	280	0.79	172	2806 ± 15	2840 ± 9	1	1.834	0.7	0.2017	0.6	15.2	0.9	0.545	0.7	0.761
1.1	0.09	55.3	44.2	0.83	26.9	2890 ± 37	2848 ± 18	-1	1.767	1.6	0.2027	1.1	15.8	1.9	0.566	1.6	0.824
13.1	0.04	58.5	49.7	0.88	28.2	2871 ± 29	2894 ± 27	1	1.782	1.2	0.2085	1.7	16.1	2.1	0.561	1.2	0.594
17.1	0.11	89.4	91.4	1.06	43.8	2904 ± 27	2903 ± 17	0	1.756	1.1	0.2097	1.1	16.5	1.6	0.569	1.1	0.730
11.1	0.09	107	85.1	0.82	51.4	2866 ± 21	2907 ± 16	1	1.786	0.9	0.2102	1.0	16.2	1.3	0.560	0.9	0.683
4.1	0.06	78.6	80.5	1.06	38.5	2905 ± 28	2912 ± 17	0	1.756	1.2	0.2108	1.1	16.6	1.6	0.569	1.2	0.747
8.1	0.18	77.8	71.0	0.94	38.8	2948 ± 24	2914 ± 19	-1	1.724	1.0	0.2111	1.2	16.9	1.5	0.580	1.0	0.665
10.1	0.07	133	155	1.20	66.4	2948 ± 20	2918 ± 14	-1	1.724	0.8	0.2117	0.8	16.9	1.2	0.580	0.8	0.705
6.1	0.00	174	136	0.81	86.8	2958 ± 18	2934 ± 12	-1	1.717	0.8	0.2137	0.7	17.2	1.1	0.582	0.8	0.725
3.1	0.00	58.4	61.2	1.08	29.1	2945 ± 36	2977 ± 19	1	1.727	1.5	0.2194	1.2	17.5	1.9	0.579	1.5	0.788
7.1	0.33	45.2	35.8	0.82	22.5	2939 ± 30	2988 ± 24	2	1.729	1.3	0.2209	1.5	17.6	2.0	0.578	1.3	0.646
19.1	0.10	80.5	76.6	0.98	41.2	3010 ± 25	2989 ± 18	-1	1.679	1.0	0.2211	1.1	18.2	1.5	0.595	1.0	0.691
16.1	0.20	70.9	81.4	1.19	36.2	3000 ± 26	2991 ± 19	0	1.686	1.1	0.2215	1.2	18.1	1.6	0.593	1.1	0.672
12.1	0.05	575	1057	1.90	291	$2985\pm\!\!15$	2996 ± 7	0	1.698	0.6	0.2221	0.5	18.0	0.8	0.589	0.6	0.800
9.1	0.00	328	260	0.82	169	3032 ± 35	2996 ± 17	-1	1.665	1.4	0.2221	1.1	18.4	1.8	0.601	1.4	0.804
5.1	0.00	438	488	1.15	231	3086 ± 20	3066 ± 8	-1	1.628	0.8	0.2320	0.5	19.7	1.0	0.614	0.8	0.842
14.1	0.05	568	266	0.48	304	3115 ± 19	3146 ± 7	1	1.609	0.8	0.2439	0.4	20.9	0.9	0.621	0.8	0.869

Таблица Б.2 – Результаты U-Pb (SHRIMP-II) анализов циркона из двупироксенового плагиогнейса (обр. 169-1)

Примечание. Рbс и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных возрастов приводятся на уровне 2σ.

Точка анализа	²⁰⁶ Pbc,%	U, ppm	Th, ppm	$\frac{^{232}\text{Th}}{^{238}\text{U}}$	²⁰⁶ Pb*, ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ Pb	±%	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
3.2	0.17	220	161	0.75	57	1696 ± 19	1899 ± 34	12	3.322	1.30	0.1162	1.9	4.820	2.30	0.3009	1.30	.565
5.1	0.26	112	149	1.37	34.7	1974 ± 17	1944 ± 35	-1	2.790	1.00	0.1192	1.9	5.890	2.20	0.3582	1.00	.460
7.3	0.01	138	158	1.18	43.3	2006 ± 14	1968 ± 20	-2	2.739	0.81	0.1208	1.1	6.082	1.40	0.3651	0.81	.592
8.1	0.00	107	145	1.40	32.7	1960 ± 17	1978 ± 30	1	2.816	10.0	0.1215	1.7	5.950	2.00	0.3553	1.00	.510
4.2	0.34	122	160	1.35	38.4	2002 ± 17	1984 ± 34	-1	2.744	0.98	0.1219	1.9	6.120	2.20	0.3641	0.98	.452
9.2	0.10	135	167	1.27	42.6	2009 ± 16	2010 ± 27	0	2.734	0.92	0.1237	1.5	6.230	1.80	0.3657	0.92	.512
6.2	0.42	149	138	0.95	46.7	1996 ± 16	2035 ± 31	2	2.752	0.94	0.1254	1.8	6.280	2.00	0.3629	0.94	.468
10.1	2.96	163	69	0.43	58.3	2171 ± 20	2161 ± 60	0	2.477	1.10	0.1348	3.4	7.440	3.60	0.4005	1.10	.300
2.1	0.13	6313	363	0.06	2150	$\frac{2145 \pm 15}{2145 \pm 15}$	2419 ± 5	13	2.531	0.84	0.1565	0.3	8.522	0.89	0.3949	0.84	.940
6.1	0.64	287	157	0.57	110	2358 ± 13	2509 ± 17	6	2.260	0.68	0.1652	1.0	10.06	1.20	0.4416	0.68	.561
10.2	0.23	352	301	0.88	142	2482 ± 16	2584 ± 27	4	2.128	0.76	0.1728	1.6	11.19	1.80	0.4696	0.76	.429
1.2	0.04	354	68	0.20	157	2685 ± 17	2652 ± 10	-1	1.935	0.76	0.1799	0.6	12.82	0.97	0.5166	0.76	.786
7.2	1.26	10	1	0.08	4.58	2746 ± 60	2670 ± 79	-3	1.874	2.70	0.1819	4.8	13.32	5.50	0.5310	2.70	.492
2.2	0.01	910	185	0.21	409	2711 ± 21	2679 ± 9	-1	1.913	0.95	0.1828	0.6	13.18	1.10	0.5228	0.95	.846
13.1	0.04	448	46	0.11	200	2703 ± 21	2699 ± 9	0	1.920	0.94	0.1851	0.6	13.29	1.10	0.5208	0.94	.857
4.1	0.27	885	58	0.07	361	2496 ± 11	2784 ± 8	12	2.112	0.54	0.1949	0.5	12.71	0.72	0.4729	0.54	.750
9.1	0.00	3872	148	0.04	1830	2831 ± 15	2818 ± 5	0	1.813	0.66	0.1990	0.3	15.13	0.72	0.5515	0.66	.910
7.1	0.07	146	123	0.87	67.4	$\frac{2763 \pm 38}{2763 \pm 38}$	2929 ± 15	6	1.868	1.70	0.2131	0.9	15.72	1.90	0.5352	1.70	.878
3.1	0.09	179	64	0.37	88.7	2935 ± 31	2933 ± 17	0	1.733	1.30	0.2136	1.1	16.98	1.70	0.5767	1.30	.770
13.2	0.06	242	96	0.41	122	2976 ± 23	2935 ± 12	-1	1.704	0.94	0.2139	0.7	17.30	1.20	0.5866	0.94	.796
12.1	0.04	363	39	0.11	178	2916 ± 20	2954 ± 11	1	1.748	0.84	0.2164	0.7	17.07	1.10	0.5720	0.84	.773
10.2	0.08	334	237	0.73	159	2833 ± 17	2957 ± 20	4	1.811	0.76	0.2169	1.2	16.50	1.40	0.5519	0.76	.526

Таблица Б.3 – Результаты U-Pb (SHRIMP-II) анализов циркона из гиперстеновых гранулитов (обр. 169)

Примечание. Pbc и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных возрастов приводятся на уровне 2σ.

Точка анализ а	²⁰⁶ Pb _c , %	U, ppm	Th, ppm	$\frac{\frac{232}{h}}{\frac{h}{238}U}$	²⁰⁶ Pb* , ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb , млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ Pb	± %	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb *	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	± %	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
4.1	0.00	38.2	14.7	0.40	8.70	1516 ± 34	1808 ± 62	+18	3.77	2.5	0.111	3.4	4.0	4.3	0.265	2.5	0.59
6.1	0.05	958	229	0.25	238	1635 ± 18	1915 ± 13	+17	3.46	1.2	0.117	0.7	4.7	1.4	0.289	1.2	0.86
2.2		952	197	0.21	284	1919 ± 18	2013 ± 10	+5	2.88	1.1	0.124	0.6	5.9	1.2	0.347	1.1	0.89
11.1		84.7	48.2	0.59	27.0	2034 ± 34	2304 ± 28	+14	2.70	1.8	0.146	1.6	7.5	2.4	0.371	1.8	0.74
1.1	0.00	24.4	7.6	0.32	8.44	2177 ± 51	2339 ± 28	+8	2.49	2.8	0.149	2.4	8.3	3.7	0.402	2.8	0.76
13.1	0.01	1926	211	0.11	752	2414 ± 21	2642 ± 6	+10	2.20	1.0	0.179	0.3	11.2	1.1	0.454	1.0	0.95
2.1	0.03	191	10.6	0.06	81.0	2583 ± 34	2728 ± 12	+6	2.03	1.6	0.188	0.7	12.8	1.7	0.493	1.6	0.90
7.1	0.00	288	345	1.24	126	2664 ± 27	2807 ± 10	+6	1.95	1.2	0.198	0.6	13.9	1.4	0.512	1.2	0.90
3.1	0.00	25.1	18.8	0.77	11.4	2743 ± 73	2808 ± 47	+3	1.89	3.3	0.198	2.9	14.5	4.3	0.530	3.3	0.75
10.1	0.00	455	492	1.12	204	2706 ± 28	2854 ± 20	5	1.92	1.3	0.203	1.2	14.63	1.8	0.522	1.3	0.72
10.1	0.03	743	857	1.19	334	2713 ± 25	2867 ± 50	+7	1.91	1.1	0.205	3.1	14.8	3.3	0.523	1.1	0.34
4.2	0.00	550	910	1.71	253	2761 ± 26	2878 ± 22	+5	1.87	1.2	0.206	1.4	15.2	1.8	0.535	1.2	0.65
8.1		212	207	1.01	95.1	2713 ± 28	2880 ± 11	+7	1.91	1.3	0.207	0.7	14.9	1.4	0.523	1.3	0.89
9.1	0.03	203	227	1.15	96.5	2833 ± 29	2885 ± 11	+2	1.81	1.3	0.207	0.7	15.8	1.4	0.552	1.3	0.89
11.1	0.35	94.9	78.7	0.86	40.4	2582 ± 41	2890 ± 22	12	2.03	1.9	0.208	1.3	14.1	2.4	0.493	1.9	0.83
5.2	0.14	50.2	34.6	0.71	24.4	2891 ± 156	2893 ± 25	+0	1.77	6.7	0.208	1.5	16.3	6.9	0.566	6.7	0.97
13.1	0.03	289	102	0.36	139	2866 ± 33	2907 ± 12	1	1.79	1.4	0.210	0.75	16.2	1.6	0.560	1.4	0.88
12.1		182	200	1.13	85.8	2818 ± 33	2909 ± 12	+4	1.82	1.4	0.210	0.7	15.9	1.6	0.548	1.4	0.89
5.1	0.00	36.4	19.0	0.54	18.5	3000 ± 59	2913 ± 24	-4	1.69	2.5	0.211	1.5	17.2	2.9	0.593	2.5	0.86
12.1	0.02	459	563	1.27	214	2801 ± 31	2932 ± 20	5	1.84	1.4	0.213	1.2	16.0	1.8	0.544	1.4	0.74
9.2	0.00	11.3	0.25	0.02	6.07	3132 ± 96	3069 ± 36	-3	1.60	3.9	0.232	2.2	20.1	4.5	0.626	3.9	0.87

Таблица Б.4 – Результаты U-Pb (SHRIMP-II) анализов циркона из гранат-ортопироксенового амфиболита (обр. 166)

Примечание. Рbс и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1_о, погрешности вычисленных возрастов приводятся на уровне 2_о.

Точка анализа	²⁰⁶ Pbc,%	U, ppm	Th, ppm	$\frac{\frac{232}{238}}{U}$	²⁰⁶ Pb*, ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	D, %	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
1.1	0.00	113	102	0.93	54.7	2878 ± 31	2893 ± 10	+1	0.208	0.60	16.2	1.5	0.563	1.4	.913
2.1	0.09	71	64	0.94	33.4	2821 ± 27	2874 ± 11	+2	0.206	0.65	15.6	1.3	0.549	1.2	.875
3.1	0.12	109	132	1.25	53.9	2931 ± 27	2915 ± 9	-1	0.211	0.53	16.8	1.3	0.576	1.2	.909
4.1	0.17	79	73	0.96	40.7	3030 ± 28	2927 ± 10	-3	0.213	0.60	17.6	1.3	0.600	1.2	.889
5.1	0.11	230	176	0.79	70.5	1964 ± 18	2019 ± 10	+3	0.124	0.59	6.10	1.2	0.356	1.0	.872
6.1	0.41	297	253	0.88	91.1	1959 ± 17	2031 ± 10	+4	0.125	0.57	6.13	1.2	0.355	1.0	.876
7.1	0.10	643	151	0.24	193	1933 ± 17	2021 ± 6	+5	0.124	0.35	6.00	1.1	0.350	10	.945
8.1	0.24	412	353	0.89	130	2008 ± 18	2020 ± 8	+1	0.124	0.48	6.27	1.1	0.365	1.0	.907
9.1	0.13	78	79	1.05	41.3	3090 ± 29	2990 ± 11	-3	0.221	0.68	18.8	1.4	0.615	1.2	.865
10.1	0.00	103	120	1.21	49.2	2847 ± 27	2857 ± 9	0	0.204	0.54	15.6	1.3	0.555	1.2	.908
11.1	0.09	76	75	1.02	37.1	2909 ± 29	2932 ± 10	+1	0.214	0.62	16.8	1.4	0.570	1.2	.892
12.1	0.00	658	590	0.93	199	1949 ± 17	1974 ± 6	+1	0.121	0.31	5.90	1.0	0.353	1.0	.955

Таблица Б.5 – Результаты U-Pb (SHRIMP-II) анализов циркона из плагиоклазового вебстерита (обр. 171)

Примечание. Pbc и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных возрастов приводятся на уровне 2σ.

Таблица Б.6 – Результаты U-Pb (SHRIMP-II) анализов цирн	кона из кварцитов далдынской серии (Анабарский щит)
(обр. 820)	

Точка анализа	²⁰⁶ Pb _c ,%	U, ppm	Th, ppm	$\frac{^{232}\text{Th}}{^{238}\text{U}}$	²⁰⁶ Pb*, ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Рb/ ²⁰⁶ Рb, млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ Pb	±%	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
1.1	0.03	126	74.5	0.61	78.8	3523 ± 29	3473 ± 7	-1	1.375	1.1	0.301	0.4	30.1	1.1	0.727	1.1	0.92
2.1	0.04	130	113	0.90	79.7	3470 ± 28	3433 ± 7	-1	1.402	1.1	0.293	0.5	28.8	1.1	0.713	1.1	0.92
3.1	0.02	255	95.4	0.39	169	3683 ± 31	3740 ± 4	+2	1.298	1.1	0.358	0.3	38.0	1.2	0.771	1.1	0.97
4.1	0.05	356	193	0.56	225	3553 ± 25	3621 ± 4	+2	1.36	0.9	0.331	0.3	33.5	1.0	0.735	0.9	0.96
5.1	0.05	229	18.1	0.08	140	3459 ± 26	3554 ± 5	+3	1.408	1.0	0.317	0.3	31.0	1.0	0.710	1.0	0.95
6.1	0.05	888	400	0.47	392	2674 ± 22	3204 ± 6	+20	1.945	1.0	0.253	0.4	17.9	1.1	0.514	1.0	0.93
7.1	0.07	412	301	0.76	256	3504 ± 25	3619 ± 5	+3	1.385	0.9	0.331	0.3	32.9	10	0.722	0.9	0.94
8.1	0.02	123	58.8	0.49	76.7	3512 ± 28	3511 ± 7	0	1.381	1.0	0.308	0.4	30.7	1.1	0.724	1.0	0.92
9.1	0.03	147	73.1	0.51	89.6	3451 ± 27	3447 ± 17	0	1.413	10	0.296	1.1	28.9	1.5	0.708	10	0.68
10.1	0.04	490	395	0.83	297	3442 ± 25	3452 ± 5	0	1.417	0.9	0.297	0.3	28.9	1.0	0.706	0.9	0.94
11.1	0.03	123	59.2	0.50	76.6	3521 ± 29	3498 ± 8	-1	1.376	1.1	0.305	0.6	30.6	1.2	0.727	1.1	0.89
12.1	0.23	96.0	78.7	0.85	59.7	3503 ± 28	3634 ± 8	+4	1.385	1.0	0.334	0.5	33.2	1.2	0.722	1.0	0.89
13.1	0.04	252	296	1.22	148	3368 ± 26	3536 ± 6	+5	1.457	1.0	0.313	0.4	29.6	1.0	0.686	1.0	0.94
14.1	0.08	73.4	67.1	0.94	44.5	3440 ± 31	3603 ± 9	+5	1.418	1.2	0.327	0.6	31.8	1.3	0.705	1.2	0.90
15.1	0.07	156	103	0.68	94.2	3437 ± 27	3600 ± 7	+5	1.420	1.0	0.326	0.5	31.7	1.1	0.704	1.0	0.91
10.2	0.01	746	37.4	0.05	347	2789 ± 21	2768 ± 11	-1	1.848	0.9	0.193	0.6	14.4	1.1	0.541	0.9	0.82
3.2	0.02	280	100	0.37	183	3637 ± 27	3733 ± 4	+3	1.319	1.0	0.356	0.3	37.2	1.0	0.758	1.0	0.96

Примечание. Рbc и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1 σ , погрешности вычисленных возрастов приводятся на уровне 2 σ .

Точка анализа	²⁰⁶ Pb _c ,%	U, ppm	Th, ppm	$\frac{232}{238}$ U	²⁰⁶ Pb*, ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ Pb	±%	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
1.1	0.03	107	47.7	0.46	64.1	3399 ± 28	3487 ± 8	+3	1.44	1.0	0.303	0.5	29.0	1.2	0.694	1.0	0.90
2.1	0.03	247	116	0.48	148	3414 ± 26	3464 ± 6	+1	1.43	1.0	0.299	0.4	28.8	1.1	0.698	1.0	0.93
3.1	0.03	209	103	0.51	129	3494 ± 27	3505 ± 11	0	1.39	10	0.307	0.7	30.4	1.2	0.719	10	0.82
4.1	0.03	180	82.4	0.47	113	3542 ± 27	3491 ± 6	-1	1.37	1.0	0.304	0.4	30.7	1.1	0.732	1.0	0.93
5.1	0.02	144	84.5	0.61	89.7	3517 ± 27	3472 ± 7	-1	1.38	1.0	0.300	0.4	30.1	1.1	0.726	1.0	0.92
6.1	0.05	151	95.6	0.65	93.1	3481 ± 27	3496 ± 7	0	1.40	1.0	0.305	0.4	30.1	1.1	0.716	1.0	0.92
7.1	0.02	88.2	46.1	0.54	55.0	3515 ± 29	3441 ± 8	-2	1.38	1.1	0.294	0.6	29.4	1.2	0.725	1.1	0.89
8.1	0.02	94.0	65.5	0.72	58.3	3500 ± 30	3554 ± 10	+2	1.39	1.1	0.317	0.6	31.5	1.3	0.721	1.1	0.87
9.1	0.02	167	73.1	0.45	108	3618 ± 28	3523 ± 11	-3	1.33	1.0	0.311	0.7	32.2	1.2	0.753	1.0	0.83
10.1	0.03	153	76.5	0.52	96.8	3549 ± 27	3501 ± 8	-1	1.36	1.0	0.306	0.5	31.0	1.1	0.734	1.0	0.90
11.1	0.02	119	64.2	0.56	73.6	3503 ± 29	3469 ± 7	-1	1.39	1.1	0.300	0.5	29.8	1.2	0.722	1.1	0.92
12.1	0.04	82.6	41.9	0.52	47.4	3297 ± 27	3479 ± 9	+6	1.50	1.1	0.302	0.6	27.8	1.2	0.668	1.1	0.89
12.2	0.11	132	2.74	0.02	61.5	2786 ± 24	2778 ± 16	0	1.85	1.0	0.194	1.0	14.5	1.4	0.541	1.0	0.74
13.1	0.02	163	73.9	0.47	94.3	3318 ± 26	3487 ± 11	+5	1.49	1.0	0.303	0.7	28.1	1.2	0.673	1.0	0.81
14.1	0.04	117	67.4	0.60	72.1	3482 ± 28	3483 ± 7	0	1.40	1.0	0.303	0.5	29.9	1.1	0.716	1.0	0.91
15.1	0.01	629	526	0.86	389	3497 ± 25	3587 ± 7	+3	1.39	0.9	0.324	0.5	32.1	1.0	0.720	0.9	0.89

Таблица Б.7 – Результаты U-Pb (SHRIMP-II) анализов циркона из кварцитов далдынской серии (Анабарский щит) (обр. 831-1)

Примечание. Pbc и Pb* – общий и радиогенный свинец. Погрешность калибровки стандарта 0.33%. (1) – коррекция по ²⁰⁴Pb. D – дискордантность. Rho – коэффициент корреляции. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных возрастов приводятся на уровне 2σ.

Точка анализа	²⁰⁶ Pb _c ,%	U, ppm	Th, ppm	$\frac{^{232}\text{Th}}{^{238}\text{U}}$	²⁰⁶ Pb*, ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ Pb	±%	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
1.1	0.07	228	158	0.72	117	3012 ± 46	2873 ± 11	-5	1.678	1.9	0.2064	0.7	16.9	2.0	0.596	1.9	.941
2.1	0.07	60	31	0.54	31.5	3061 ± 59	3165 ± 23	3	1.644	2.4	0.2475	1.4	20.7	2.8	0.608	2.4	.858
3.1	0.05	318	126	0.41	130	2507 ± 38	2535 ± 13	1	2.103	1.8	0.1681	0.8	11.0	2.0	0.475	1.8	.924
4.1	0.05	128	44	0.36	61.6	2872 ± 46	2858 ± 15	0	1.781	2	0.2044	0.9	15.8	2.2	0.561	2.0	.909
5.1	0.01	408	208	0.53	218	3119 ± 45	3347 ± 15	7	1.607	1.8	0.2773	0.4	23.8	1.9	0.622	1.8	.973
6.1	0.46	196	70	0.37	93.1	2831 ± 44	$2689 \pm \! 39$	-5	1.805	1.9	0.1881	2.3	14.0	3.1	0.551	1.9	.632
7.1	0.00	110	71	0.67	57.5	3071 ± 49	3274 ± 33	7	1.639	2	0.2645	2.1	22.3	2.9	0.610	2.0	.686
8.1	0.06	199	103	0.54	90.3	2734 ± 47	2769 ± 14	1	1.892	2.1	0.1937	0.8	14.1	2.3	0.528	2.1	.930
9.1	0.02	342	190	0.57	147	2621 ± 40	2674 ± 28	2	1.993	1.8	0.1825	1.7	12.6	2.5	0.502	1.8	.743
10.1	0.07	268	125	0.48	127	2826 ± 42	2738 ± 13	-3	1.816	1.8	0.1902	0.8	14.4	2.0	0.550	1.8	.917
11.1	0.05	204	91	0.46	94.1	2765 ± 42	2680 ± 20	-3	1.866	1.9	0.1834	1.2	13.5	2.2	0.536	1.9	.843
12.1	0.08	114	81	0.74	57.5	2986 ± 50	2981 ± 61	0	1.696	2.1	0.2208	3.8	17.9	4.3	0.589	2.1	.482
13.1	0.05	755	152	0.21	275	2276 ± 33	2326 ± 15	2	2.361	1.7	0.1487	0.9	8.7	1.9	0.423	1.7	.894
14.1	0.05	168	82	0.50	82.6	2915 ± 45	2930 ± 35	1	1.748	1.9	0.2137	2.1	16.8	2.9	0.572	1.9	.662
15.1	0.02	205	96	0.48	97.0	2833 ± 43	2717 ± 15	-4	1.812	1.9	0.1874	0.9	14.2	2.1	0.552	1.9	.893
16.1	0.10	132	69	0.54	61.8	2810 ± 45	2719 ± 28	-3	1.829	2	0.1883	1.7	14.1	2.6	0.546	2.0	.751
17.1	0.23	60	38	0.65	27.7	2756 ± 54	2876 ± 23	4	1.871	2.4	0.2083	1.3	15.2	2.8	0.533	2.4	.864
18.1	0.02	369	195	0.55	155	2561 ± 39	2609 ± 10	2	2.049	1.8	0.1754	0.6	11.8	1.9	0.488	1.8	.949
19.1	0.02	143	61	0.44	71.2	2947 ± 48	2863 ± 26	-3	1.725	2	0.2048	1.6	16.4	2.6	0.579	2.0	.780
20.1	0.04	342	208	0.63	172	2967 ± 43	3166 ± 8	7	1.71	1.8	0.2474	0.5	19.9	1.9	0.584	1.8	.965
21.1	0.16	70	27	0.39	37.5	3112 ± 57	2953 ± 30	-5	1.609	2.3	0.2177	1.8	18.5	2.9	0.620	2.3	.781
22.1	0.02	877	311	0.37	328	2329 ± 34	2451 ± 13	5	2.297	1.7	0.1597	0.8	9.6	1.9	0.435	1.7	.910
23.1	0.02	518	243	0.49	229	2682 ± 44	2676 ± 8	0	1.938	2	0.1827	0.5	13.0	2.0	0.516	2.0	.973

Таблица Б.8 – Результаты U-Pb (SHRIMP-II) анализов циркона из кварцитов далдынской серии (Анабарский щит) (обр. 523)

Точка анализа	²⁰⁶ Pb _c ,%	U, ppm	Th, ppm	$\frac{^{232}\text{Th}}{^{238}\text{U}}$	²⁰⁶ Pb*, ppm	Возраст ²⁰⁶ Pb/ ²³⁸ U, млн лет	Возраст ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	D, %	(1) ²³⁸ U/ ²⁰⁶ Pb	±%	(1) ²⁰⁷ Pb*/ ²⁰⁶ Pb*	±%	(1) ²⁰⁷ Pb*/ ²³⁵ U	±%	(1) ²⁰⁶ Pb*/ ²³⁸ U	±%	Rho
6.2	0.42	51	65	1.33	15.4	1948 ± 21	1918 ± 32	-1	2.841	1.10	0.1174	1.8	5.69	2.1	0.3516	1.1	.519
12.2	0.00	74	133	1.85	23.1	1993 ± 20	1995 ± 19	0	2.760	10.0	0.1226	1.0	6.13	1.4	0.3623	1.0	.691
12.1	0.03	139	102	0.76	43.3	1993 ± 19	2002 ± 16	0	2.758	0.93	0.1231	0.9	6.15	1.3	0.3625	0.9	.718
10.2	0.11	39	51	1.33	12.3	2004 ± 25	1976 ± 29	-1	2.748	1.20	0.1214	1.6	6.09	2.0	0.3638	1.2	.595
4.2	0.07	61	85	1.44	19.1	2001 ± 20	2011 ± 20	0	2.745	0.99	0.1238	1.1	6.22	1.5	0.3642	1.0	.666
6.1	0.08	49	84	1.76	15.4	2004 ± 22	1992 ± 22	0	2.745	1.10	0.1224	1.2	6.15	1.6	0.3642	1.1	.657
2.2	0.00	67	96	1.47	21.1	2005 ± 19	2003 ± 18	0	2.741	0.94	0.1232	1.0	6.20	1.4	0.3648	0.9	.683
4.1	0.15	77	83	1.12	24.2	2008 ± 18	1991 ± 20	-1	2.740	0.88	0.1223	1.1	6.16	1.4	0.3649	0.9	.618
3.2	0.00	57	86	1.54	18.0	2011 ± 20	2001 ± 19	0	2.734	0.99	0.1231	1.1	6.21	1.5	0.3658	1.0	.679
9.2	1.79	40	1	0.03	13.3	2093 ± 26	2082 ± 65	0	2.609	1.30	0.1288	3.7	6.78	4.0	0.3816	1.3	.341
3.1	0.03	149	81	0.56	49.0	2062 ± 15	2214 ± 11	6	2.618	0.71	0.1390	0.7	7.32	1.0	0.3819	0.7	.733
10.1	0.01	585	137	0.24	198	2140 ± 12	2153 ± 6	1	2.538	0.58	0.1341	0.4	7.29	0.7	0.3941	0.6	.853
7.2	0.32	70	13	0.19	24.1	2163 ± 21	2134 ± 29	-1	2.515	0.94	0.1327	1.6	7.27	1.9	0.3973	0.9	.496
2.1	0.32	169	211	1.29	64.2	2305 ± 19	2566 ± 12	9	2.263	0.80	0.1708	0.7	10.4	1.1	0.4415	0.8	.736
1.1	0.32	105	55	0.54	43.1	2472 ± 21	2626 ± 14	5	2.103	0.81	0.1771	0.8	11.6	1.2	0.4751	0.8	.698
7.1	0.02	217	194	0.92	90.9	2546 ± 18	2611 ± 7	2	2.049	0.66	0.1756	0.5	11.8	0.8	0.4880	0.7	.826
11.1	0.01	223	102	0.47	99.4	2685 ± 21	2701 ± 10	0	1.932	0.69	0.1854	0.6	13.2	0.9	0.5176	0.7	.758
5.1	0.06	230	201	0.90	103	2710 ± 20	2693 ± 7	0	1.918	0.65	0.1844	0.4	13.3	0.8	0.5214	0.7	.832
9.1	0.15	72	41	0.59	34.1	2903 ± 35	2613 ± 35	-7	1.825	0.91	0.1758	2.1	13.3	2.3	0.5475	0.9	.400
8.1	0.00	77	45	0.60	36.8	2874 ± 36	2758 ± 11	-3	1.808	1.00	0.1918	0.7	14.6	1.2	0.5530	1.0	.842

Таблица Б.9 – Результаты U-Pb (SHRIMP-II) анализов циркона из кварцитов далдынской серии (Анабарский щит) (обр. 823-1)

ПРИЛОЖЕНИЕ В Содержание редких и редкоземельных элементов

Таблица В.1 – Содержание редких и редкоземельных элементов (ppm) в цирконе из биотит-гиперстенового кристаллосланца (обр. 508)

Компо- нент	301	2 ± 15 мл	ін лет (яд	(pa)]	1971 ± 1	2 млн лет	(каймы		
	3.1	4.1	8.1	12.1	1.1	2.1	9.1	5.1	10.1	11.1	15.1
La	0.47	0.29	0.21	0.29	0.98	0.51	1.39	2.91	1.28	1.90	1.02
Ce	11.5	10.4	11.9	6.70	11.6	17.9	23.4	17.4	11.2	13.1	6.69
Pr	0.45	0.22	0.46	0.10	0.82	0.34	1.09	2.32	1.40	1.80	0.78
Nd	3.72	2.11	5.32	0.93	5.13	2.74	6.07	14.8	10.4	10.9	4.44
Sm	2.52	1.65	7.08	0.72	6.47	2.84	4.72	6.00	4.47	3.51	1.56
Eu	1.17	0.82	1.88	0.38	0.57	0.47	1.69	1.30	2.13	1.07	2.43
Gd	8.54	6.29	29.2	3.66	7.61	14.0	17.6	10.3	6.98	6.17	3.60
Dy	30.3	28.3	88.6	14.9	21.4	60.7	69.9	30.7	15.7	19.4	10.9
Er	77.3	86.8	193	45.9	44.4	137	146	55.0	26.3	34.0	20.1
Yb	193	230	370	122	89.0	232	241	102	46.1	57.3	33.4
Lu	37.8	46.8	66.4	27.5	15.9	36.8	39.4	20.4	7.37	11.6	4.84
Li	0.64	2.37	0.10	1.84	3.11	4.25	6.99	14.0	17.8	22.7	5.27
Р	57.8	141	87.3	97.4	44.8	271	278	38.5	45.2	136	108
Ca	7.28	3.93	2.42	2.05	35.8	22.8	52.5	131	19.8	21.4	15.0
Ti	13.1	15.4	19.1	13.0	10.8	9.16	9.74	12.5	8.38	14.5	5.89
Sr	0.35	0.25	0.34	0.07	0.74	0.38	1.38	1.55	0.46	0.03	0.29
Y	376	428	1035	214	247	653	802	331	149	276	100
Nb	4.89	3.29	3.38	3.16	5.35	7.37	2.90	5.81	2.99	41.4	10.9
Ba	0.92	0.73	0.55	1.02	2.01	2.32	3.24	6.65	1.46	0.92	0.87
Hf	8494	7422	8264	7088	10472	10249	9998	12317	9813	12427	11499
Th	218	196	193	110	66.9	41.1	62.4	54.9	17.9	33.0	12.6
U	342	355	252	242	209	309	429	451	1281	1033	410
Th/U	0.64	0.55	0.77	0.46	0.32	0.13	0.15	0.12	0.01	0.03	0.03
Eu/Eu*	0.77	0.78	0.40	0.71	0.25	0.22	0.57	0.50	1.16	0.70	3.13
Ce/Ce*	6.05	10.1	9.41	9.46	3.12	10.4	4.61	1.62	2.03	1.71	1.81
ΣREE	367	414	775	223	204	505	552	264	133	161	89.8
ΣLREE	161	13.0	179	8 02	18.5	21.5	32.0	37.5	24 3	277	12.9
ΣHREE	347	398	748	214	178	480	513	219	102	129	72.8
Lu _N /La _N	769	1566	3121	921	157	693	273	67.4	55.5	58.9	45.8
Lu_N/Gd_N	35.8	60.2	18.4	60.9	16.9	21.2	18.1	16.0	8.54	15.2	10.9
Sm _N /La _N	8.52	9.16	55.3	4.01	10.6	8.90	5.44	3.30	5.60	2.96	2.46
<i>T</i> (Ti), °C	768	782	803	767	750	735	741	763	728	777	698

Компо-	> 306 л(6 млн ет			2991 ± 11	млн лет					2920 ± 11	млн ле	ſ			~ 19	928 – 289	4 млн ле	Т	
nen1	14.1	5.1	9.1	12.1	3.1	7.1	16.1	19.1	6.1	4.1	10.1	8.1	11.1	17.1	13.1	1.1	20.1	18.1	15.1	2.1
La	0.08	1.05	3.82	0.19	0.06	0.13	0.15	0.15	0.08	0.16	0.23	0.06	0.53	0.38	0.26	0.05	0.45	0.10	0.04	0.11
Ce	7.93	46.7	39.6	32.3	12.1	8.57	10.5	16.5	20.0	15.5	18.7	18.3	15.7	17.7	11.1	14.3	37.4	13.2	6.52	16.2
Pr	0.03	0.86	1.81	0.65	0.06	0.06	0.09	0.30	0.11	0.12	0.51	0.26	0.34	0.42	0.11	0.09	0.61	0.13	0.02	0.14
Nd	0.21	7.97	13.1	9.63	0.87	0.57	1.14	5.23	1.77	1.29	7.07	3.52	3.39	6.61	0.97	0.75	9.26	2.45	0.34	2.07
Sm	0.65	13.3	12.0	13.9	1.98	1.00	2.14	7.33	3.23	1.50	9.50	6.24	5.02	7.02	1.81	1.70	16.5	6.35	0.54	3.29
Eu	0.04	1.10	2.23	0.97	0.48	0.26	0.50	1.50	0.47	0.42	2.02	1.10	1.52	1.48	0.39	0.32	2.91	1.27	0.11	0.67
Gd	6.21	68.3	54.3	71.3	11.8	6.10	10.8	29.4	18.3	8.11	32.2	24.1	23.3	31.8	9.44	8.18	81.6	34.1	2.31	15.9
Dy	52.1	284	187	305	41.4	24.8	42.5	95.2	77.4	31.9	94.4	76.2	96.6	110	34.8	31.7	289	55.1	11.2	49.8
Er	184	574	371	666	87.8	52.5	82.8	159	168	67.8	186	156	219	190	75.7	69.8	573	41.6	29.7	95.3
Yb	411	989	630	1167	148	97.7	135	246	310	121	306	267	412	321	138	131	1002	47.8	70.0	184
Lu	69.3	137	105	190	24.7	16.3	23.8	42.2	55.5	20.4	49.5	42.3	68.0	50.2	23.3	20.3	163	7.82	13.2	30.0
Li	8.26	4.35	6.48	6.05	0.03	0.40	0.32	0.16	0.33	0.71	0.13	0.16	0.14	0.66	0.17	0.22	0.28	2.45	9.96	1.17
Р	397	1102	405	1087	186	217	142	148	216	151	106	254	220	281	110	100	472	131	35.3	93.4
Ca	14.4	146	108	10.40	3.19	2.68	33.8	7.07	1.52	4.05	7.79	2.88	8.88	10.9	15.9	1.23	10.2	2.65	6.47	4.83
Ti	19.3	19.5	12.4	18.8	9.60	5.86	6.30	8.50	11.5	10.9	7.63	8.73	6.89	6.77	8.18	7.99	26.8	9.70	17.1	14.7
Sr	0.28	0.31	1.68	0.84	b.d.l.	0.09	0.63	0.13	0.01	0.02	0.36	0.19	0.39	0.42	0.23	0.05	0.80	0.07	0.22	b.d.l.
Y	894	3478	2082	3754	473	294	491	963	954	395	990	856	1156	1056	414	375	2938	346	172	511
Nb	40.9	17.4	19.0	29.2	14.7	8.47	18.4	22.4	19.0	13.9	16.1	12.4	23.6	12.8	7.61	51.4	12.6	20.3	22.6	25.6
Ва	1.27	2.37	4.82	1.83	1.91	0.84	1.46	1.17	1.73	1.17	2.10	1.82	1.61	1.17	1.14	1.39	2.16	1.29	0.87	1.12
Hf	12430	8713	7413	9925	7501	7688	7547	8594	8832	8193	7766	8757	7948	7354	8343	7848	7712	11385	7678	8091
Th	81.3	540	358	702	75.7	45.1	78.2	118	156	94.2	177	135	110	147	57.5	52.3	517	48.8	162	212
IJ	928	625	510	1119	92.9	80.2	115	123	253	126	200	163	200	187	88.7	90.7	775	229	1489	491

Таблица В.2 – Содержание редких и редкоземельных элементов (ppm) в цирконе из двупироксенового плагиогнейса (обр. 169-1)

163

Продолжение таблицы В.2

Компо- нент	14.1	5.1	9.1	12.1	3.1	7.1	16.1	19.1	6.1	4.1	10.1	8.1	11.1	17.1	13.1	1.1	20.1	18.1	15.1	2.1
Th/U	0.09	0.86	0.70	0.63	0.81	0.56	0.68	0.95	0.61	0.75	0.89	0.83	0.55	0.79	0.65	0.58	0.67	0.21	0.11	0.43
Eu/Eu*	0.06	0.11	0.27	0.09	0.30	0.32	0.32	0.31	0.19	0.37	0.35	0.27	0.43	0.30	0.29	0.26	0.24	0.26	0.30	0.28
Ce/Ce*	37.0	11.9	3.64	22.4	49.4	23.6	22.1	18.8	51.6	27.1	13.0	34.4	8.92	10.6	16.0	51.0	17.2	28.1	49.8	31.6
ΣREE	732	2123	1419	2457	329	208	309	602	655	268	706	595	845	736	296	278	2176	210	134	398
ΣLREE	8.25	56.5	58.2	42.7	13.1	9.32	11.9	22.2	22.0	17.1	26.5	22.1	20.0	25.1	12.4	15.2	47.7	15.9	6.9	18.5
ΣHREE	723	2052	1347	2399	314	197	295	571	630	249	668	565	819	703	281	261	2109	186	126	375
Lu _N /La _N	8537	1253	264	9738	3761	1230	1550	2678	6507	1249	2032	6373	1230	1257	863	3713	3473	728	3089	2613
Lu_N/Gd_N	90.3	16.2	15.6	21.5	17.0	21.6	17.8	11.6	24.5	20.3	12.4	14.2	23.6	12.8	20.0	20.0	16.1	1.85	46.4	15.2
Sm _N /La _N	13.3	20.3	5.04	119	50.1	12.6	23.2	77.4	62.9	15.2	64.8	156	15.1	29.2	11.1	51.8	58.4	98.3	21.0	47.7
<i>T</i> (Ti), °C	804	806	762	802	739	698	704	729	756	751	720	731	711	710	726	724	838	740	793	778

Таблица В.3 –	Содержание ред	ких и редкоземельн	ых элементов	(ppm)	в цирконе из	двупироксеново	го плагиогнейса
(обр. 169)							

		ядерные	части											
Компо-	2042 ± 12		2784–28	31 млн	26	583 ± 20 млі	н лет (кайм	ы)		199	0 ± 12 млн л	тет (каймь	I)	
нент	2942 - 12		ле	Г			-							
	3.1	4.1	9.1	13.2	1.2	2.2	7.2	13.1	4.2	5.1	6.2	7.3	8.1	9.2
La	0.12	0.17	30.0	0.46	0.83	0.17	0.23	0.36	0.19	0.20	1.32	0.25	0.26	0.23
Ce	8.51	4.5	86.5	7.59	10.5	11.1	1.79	6.14	12.6	13.4	18.3	14.3	13.5	10.3
Pr	0.10	0.19	11.7	0.50	1.00	0.12	0.16	0.25	0.13	0.13	0.92	0.20	0.15	0.11
Nd	1.36	1.10	64.1	3.00	5.77	1.04	0.66	1.22	1.22	1.50	4.47	1.63	1.09	1.06
Sm	2.35	1.31	16.1	1.67	2.84	1.80	0.31	1.10	2.18	2.13	3.10	2.41	2.13	2.01
Eu	0.33	0.45	0.90	0.53	0.33	0.24	0.17	0.19	0.21	0.23	0.64	0.44	0.25	0.18
Gd	12.8	6.43	27.7	5.85	5.00	15.3	0.69	6.37	14.7	15.5	12.8	12.8	14.1	12.6
Dy	56.0	40.1	106	30.4	14.1	76.1	3.03	40.3	73.5	81.9	67.3	69.2	72.9	61.0
Er	129	102	260	103	35.9	197	15.8	66.8	184	211	171	173	189	145
Yb	236	236	675	298	98.2	395	115	94.3	387	452	383	383	442	297
Lu	39.0	43.6	121	64.9	17.9	66.8	34.4	15.1	67.2	83.0	70.9	69.6	81.8	52.4
Li	1.01	6.58	14.3	1.16	6.29	4.56	2.00	3.28	3.59	1.36	2.84	2.31	1.22	1.67
Р	236	116	3042	175	23.8	382	30.2	202	343	422	403	384	440	302
Ca	3.02	377	4610	18.2	96.7	5.43	26.1	17.3	17.9	9.12	57.5	26.8	8.76	11.6
Ti	7.71	17.3	28.1	10.6	16.3	12.6	7.47	10.0	12.8	8.9	9.52	9.67	10.1	11.3
Sr	0.30	8.13	7.26	0.42	1.56	0.36	0.96	0.48	0.36	0.59	1.36	1.05	0.65	0.43
Y	674	548	1318	532	180	967	54.6	442	961	1003	808	860	932	730
Nb	20.6	11.6	10.7	2.56	32.9	19.1	7.41	5.79	8.55	6.77	6.27	6.44	7.64	6.33
Ba	0.56	27.7	3.61	2.18	7.90	0.81	3.63	1.98	1.54	1.62	5.02	3.23	1.49	1.46
Hf	11000	11913	18562	9490	12924	10912	12169	11837	10565	10188	10084	9379	9922	10545
Th	85.3	49.0	114	72.4	68.4	141	3.19	46.4	145	128	108	133	128	155
U	234	822	3104	304	452	950	42.8	598	218	144	159	162	128	171
Th/U	0.36	0.06	0.04	0.24	0.15	0.15	0.07	0.08	0.67	0.89	0.68	0.82	1.00	0.90
Eu/Eu*	0.18	0.47	0.13	0.52	0.27	0.14	1.10	0.22	0.12	0.12	0.31	0.24	0.14	0.11
Ce/Ce*	19.4	6.14	1.12	3.80	2.79	19.3	2.27	4.94	18.9	19.7	4.03	15.5	16.4	15.5
ΣREE	485	435	1401	516	192	765	172	232	743	861	733	727	818	582
ΣLREE	10.1	5.99	192	11.6	18.1	12.4	2.84	7.98	14.2	15.2	25.0	16.4	15.0	11.7

Продолжение таблицы В.3

Компо- нент	3.1	4.1	9.1	13.2	1.2	2.2	7.2	13.1	4.2	5.1	6.2	7.3	8.1	9.2
ΣHREE	472	428	1191	502	171	750	169	223	726	843	705	708	800	568
Lu_N/La_N	3171	2506	38.9	1347	209	3805	1412	403	3369	3948	519	2669	2994	2206
Lu_N/Gd_N	24.6	54.8	35.4	89.7	29.0	35.4	402	19.2	37.0	43.4	45.0	43.8	47.0	33.7
Sm _N /La _N	31.7	12.5	0.86	5.78	5.48	17.0	2.15	4.86	18.2	16.8	3.77	15.3	13.0	14.1
T(Ti), ℃	721	794	843	748	788	764	718	743	765	733	739	740	743	754

Таблица В.4 – Содержание редких и редкоземельных элементов (ppm) в цирконе из гранат-ортопироксенового амфиболита (обр. 166)

Компо- нент	ди	скордант	гный цир	кон (кай	мы)	2304 млн лет				~ 2840 M	илн лет				~ 2	2920 млн	лет	3069 млн лет
	4.1	6.1	1.1	2.2	3.1	11.1	2.1	7.1	10.1д	11.1д	10.1	4.2	8.1	9.1	12.1	5.1	12.1д	9.2
La	0.80	2.52	0.42	0.78	11.2	0.18	0.65	0.89	0.57	0.65	0.48	0.72	0.49	3.70	0.15	0.56	0.79	0.10
Ce	2.68	9.51	1.61	2.06	59.9	6.41	8.85	12.9	9.46	4.41	6.00	14.5	28.7	12.0	5.27	3.76	3.12	0.79
Pr	0.28	0.95	0.24	0.11	8.55	0.26	0.14	0.56	0.10	0.11	0.23	0.36	0.57	0.78	0.17	0.22	0.09	0.02
Nd	1.58	4.97	1.15	0.68	47.2	4.18	0.87	3.66	0.54	0.57	1.57	3.23	8.41	3.63	1.60	1.21	0.58	0.11
Sm	0.91	1.84	0.55	0.52	21.0	5.60	1.51	2.93	0.65	0.57	1.21	3.92	11.1	1.10	1.57	0.59	0.40	0.11
Eu	1.15	4.50	0.90	0.42	46.1	1.71	0.63	5.05	0.66	0.41	1.51	3.79	2.93	1.26	1.14	0.79	0.41	0.08
Gd	0.81	4.02	1.08	2.22	27.3	22.8	7.14	13.0	6.09	0.78	6.73	16.7	51.4	1.96	5.80	2.24	1.05	0.29
Dy	1.40	16.9	3.09	9.37	32.0	75.7	42.7	48.9	36.0	3.52	31.2	59.7	193	7.64	23.2	8.18	4.14	2.48
Er	3.21	34.0	11.2	31.6	48.8	172	128	127	100	9.69	83.5	132	450	22.4	55.9	27.3	15.0	9.15
Yb	17.0	58.5	42.0	81.2	127.1	318	288	318	260	34.7	241	333	845	75.3	160	83.5	51.5	34.9
Lu	4.09	9.30	9.49	14.3	21.1	52.1	51.4	63.7	52.9	5.51	50.5	68.6	153	15.5	29.5	16.0	8.98	8.25
Li	2.73	30.6	2.04	7.43	18.6	0.24	19.6	2.23	6.74	6.34	6.06	8.09	0.27	3.42	0.70	1.52	9.30	1.24
Р	22.7	106	59.3	309	133	155	187	132	349	32.9	83.3	285	381	140	91.8	64.9	107	102
Ca	218	1241	53.7	116	2759	10.7	1235	15.9	13.6	47.4	16.0	17.9	11.6	9398	9.05	23.5	201	9.55
Ti	14.6	325	5.31	115	1562	2.95	6.87	4.42	8.44	8.41	6.56	5.99	5.31	1013	5.47	10.1	52.0	3.97
Sr	4.54	11.3	0.19	2.13	59.8	b.d.l.	6.10	0.19	0.06	0.84	0.14	0.32	b.d.l.	9.25	b.d.l.	0.78	7.86	0.20
Y	18.2	153	45.2	131	331	910	790	616	587	52.0	420	746	2533	109	314	132	61.2	55.6
Nb	33.5	37.3	46.0	98.8	41.7	59.4	38.0	11.5	9.88	16.8	38.3	30.2	9.53	12.9	69.8	17.5	8.76	27.9
Ba	8.39	18.5	2.13	6.96	68.6	1.47	3.08	1.32	1.51	2.69	1.59	1.86	1.88	19.4	1.18	2.40	7.75	1.06
Hf	8520	9039	8396	9039	6893	6811	9439	5585	4292	4650	4747	4715	7898	4583	5387	5721	5136	7702
Th	21.2	168	34.4	52.8	719	51.0	233	457	681	76.2	829	811	290	67.8	93.6	33.5	72.3	11.5
U	109	1201	69.0	368	770	107	1520	535	747	413	1037	772	414	110	130	81.5	761	41.9
Th/U	0.19	0.14	0.50	0.14	0.93	0.47	0.15	0.85	0.91	0.18	0.80	1.05	0.70	0.62	0.72	0.41	0.09	0.28

Продолжение таблицы В.4

Компо- нент	4.1	6.1	1.1	2.2	3.1	11.1	2.1	7.1	10.1д	11.1д	10.1	4.2	8.1	9.1	12.1	5.1	12.1д	9.2
Eu/Eu*	4.09	5.05	3.56	1.20	5.87	0.46	0.59	2.50	1.01	1.88	1.61	1.43	0.37	2.61	1.16	2.09	1.94	1.37
Ce/Ce*	1.38	1.48	1.23	1.70	1.48	7.09	6.98	4.40	9.41	3.93	4.40	6.87	13.12	1.70	7.92	2.58	2.78	3.99
ΣREE	33.9	147	71.7	143	450	659	530	596	467	60.9	424	636	1745	145	285	144	86.0	56.3
ΣLREE	5.35	18.0	3.42	3.63	127	11.0	10.5	18.0	10.7	5.74	8.27	18.9	38.2	20.1	7.20	5.75	4.58	1.01
ΣHREE	26.5	123	66.8	139	256	640	517	570	455	54.2	413	610	1692	123	275	137	80.6	55.1
Lu _N /La _N	49.1	35.5	217	175	18.2	2730	756	692	895	82.0	1023	920	3011	40.0	1882	277	110	827
Lu_N/Gd_N	40.7	18.7	70.9	52.0	6.26	18.5	58.2	39.7	70.2	57.1	60.7	33.2	24.1	64.2	41.2	57.7	69.4	230
Sm _N /La _N	1.81	1.17	2.10	1.05	3.00	48.7	3.69	5.29	1.83	1.41	4.08	8.73	36.1	0.50	16.6	1.71	0.82	1.78
T(Ti), ℃	778	1183	690	1017	1537	646	711	676	728	728	707	700	690	1424	692	744	913	668

Компо- нент	3.1	3.2	4.1	7.1	12.1	14.1	15.1	5.1	8.1	13.1	1.1	2.1	9.1	10.1	11.1	6.1	10.2
La	0.24	0.09	2.12	14.0	217	0.11	4.66	3.19	0.37	1.33	0.18	1.67	0.08	1.90	0.06	8.72	0.77
Ce	9.82	8.99	45.6	110	465	26.8	49.4	18.2	13.8	41.7	11.6	22.2	12.2	38.9	11.5	59.0	10.8
Pr	0.22	0.11	1.17	6.70	81.6	0.21	2.96	1.68	0.81	0.98	0.20	1.22	0.12	1.96	0.09	2.19	0.48
Nd	2.17	1.74	6.92	26.7	383	2.68	14.4	6.01	6.99	7.29	3.63	9.17	1.65	18.7	1.23	8.09	2.14
Sm	4.76	4.09	8.52	10.3	21.4	4.73	7.76	0.97	7.65	8.34	7.12	10.1	3.35	24.5	2.76	4.10	1.83
Eu	1.25	0.93	0.91	3.37	4.52	1.39	2.73	1.25	0.77	2.48	0.53	0.77	0.22	0.89	0.22	0.86	0.57
Gd	32.3	26.6	42.4	33.7	73.6	21.6	32.8	4.51	29.7	31.8	36.8	41.1	16.9	122	17.9	22.5	6.97
Dy	135	124	184	124	132	69.4	114	18.3	113	111	134	132	73.7	415	72.7	117	49.1
Er	299	289	383	287	215	141	262	52.1	194	231	257	239	159	703	159	313	161
Yb	620	593	706	592	361	265	490	137	314	475	417	389	276	1033	274	718	467
Lu	105	102	106	100	57.5	43.1	77.8	24.4	53.2	79.0	65.2	61.0	43.5	154	43.8	120	78.5
Li	0.70	0.82	0.31	2.00	2.02	0.05	1.06	1.49	0.39	0.93	0.02	3.91	4.25	1.57	0.14	8.13	4.48
Р	331	422	238	295	384	101	287	39.1	218	263	137	255	162	483	110	477	261
Ca	4.49	5.64	11.4	107	39.7	6.66	44.7	56.9	3.32	10.6	4.54	8.53	0.96	17.3	0.56	1272	1436
Ti	27.7	23.2	26.4	30.1	31.4	10.2	19.2	24.0	29.6	20.2	18.0	17.7	23.2	66.2	21.3	41.5	31.2
Sr	0.67	0.70	0.81	3.03	1.84	0.43	1.41	2.18	0.45	0.64	0.48	0.53	0.38	1.11	0.37	27.0	29.0
Y	1652	1598	2224	1544	1292	758	1387	263	1358	1288	1417	1361	884	4161	849	1671	761
Nb	43.0	23.5	71.2	37.9	23.5	25.1	20.6	23.9	72.2	38.0	44.7	33.8	59.1	54.4	34.6	28.2	28.3
Ba	0.86	1.57	1.92	3.77	4.05	1.71	2.05	2.68	1.16	1.37	1.66	1.04	1.28	1.62	1.31	10.7	8.16
Hf	12240	11651	10795	10925	8581	9922	11027	11860	10041	10761	10038	9422	10080	9995	9919	11774	13301
Th	111	115	211	355	158	76.2	132.8	18.7	75.9	189	81.2	72.1	62.4	647	64.1	644	49.7
U	453	435	525	655	168	120	282	300	208	271	196	164	182	897	182	1660	952
Th/U	0.24	0.26	0.40	0.54	0.94	0.63	0.47	0.06	0.37	0.70	0.41	0.44	0.34	0.72	0.35	0.39	0.05
Eu/Eu*	0.31	0.27	0.15	0.55	0.35	0.42	0.52	1.82	0.16	0.46	0.10	0.12	0.09	0.05	0.10	0.27	0.48
Ce/Ce*	10.4	21.2	7.00	2.75	0.85	42.5	3.22	1.91	6.11	8.82	14.8	3.76	30.7	4.86	38.3	3.27	4.29

Таблица В.5 – Содержание редких и редкоземельных элементов (ppm) в цирконе из кварцитов (обр. 820)

Продолжение таблицы В.5

Компо- нент	3.1	3.2	4.1	7.1	12.1	14.1	15.1	5.1	8.1	13.1	1.1	2.1	9.1	10.1	11.1	6.1	10.2
ΣREE	1209	1150	1487	1308	2012	576	1058	268	734	990	934	907	586	2515	583	1374	779
ΣLREE	12.4	10.9	55.8	157	1146	29.8	71.4	29.1	22.0	51.3	15.6	34.2	14.1	61.4	12.8	78.0	14.2
ΣHREE	1190	1134	1422	1137	839	540	976	237	703	928	910	862	569	2428	568	1291	762
Lu _N /La _N	4295	10772	484	69.1	2.56	3739	161	73.8	1388	570	3586	352	5263	781	7596	133	982
Lu_N/Gd_N	26.3	31.1	20.3	24.0	6.32	16.2	19.2	43.7	14.5	20.1	14.3	12.0	20.8	10.3	19.8	43.4	91.1
Sm _N /La _N	32.3	71.7	6.43	1.18	0.16	68.1	2.67	0.49	33.2	10.0	65.0	9.7	67.4	20.6	79.5	0.75	3.81
<i>T</i> (Ti), °C	842	823	836	851	855	745	804	827	849	809	798	796	823	943	815	886	854

Компо- нент	2.1	3.1	4.1	6.1	7.1	9.1	10.1	11.1	1.1	5.1	8.1	12.1	12.1	13.1	14.1	15.1
La	0.31	0.22	0.05	0.04	0.25	0.08	0.40	0.07	1.83	4.96	4.15	2.04	4.46	4.66	9.71	9.58
Ce	19.2	19.7	16.8	10.0	11.0	13.3	14.0	10.4	16.3	52.0	10.1	20.7	12.6	27.6	23.4	88.6
Pr	0.14	0.20	0.10	0.20	0.32	0.07	0.26	0.09	0.76	4.26	0.87	1.59	1.25	1.53	2.61	2.41
Nd	1.42	1.97	1.58	3.69	3.04	0.75	2.55	1.68	4.49	24.1	3.01	7.46	4.85	7.31	9.85	11.9
Sm	3.08	3.38	3.63	6.29	4.31	1.97	4.05	3.55	2.75	10.6	1.67	3.50	0.85	5.11	5.94	12.9
Eu	0.15	0.12	0.17	0.55	0.61	0.07	0.30	0.39	0.26	0.50	0.99	0.42	0.54	1.55	1.37	1.24
Gd	18.9	19.9	21.2	32.3	23.9	13.3	25.2	20.3	14.0	30.5	6.47	16.2	3.05	21.0	29.7	69.3
Dy	85.3	82.4	86.8	125	88.8	61.4	95.4	82.8	58.0	103	32.6	66.1	23.1	60.5	111	273
Er	189	188	190	231	187	142	194	174	123	218	75.9	142	87.3	142	227	518
Yb	340	318	324	370	311	251	321	293	220	389	190	248	277	272	385	786
Lu	55.8	51.2	51.1	60.6	49.6	40.8	51.8	47.8	36.2	60.3	40.7	40.8	56.8	42.4	60.6	119
Li	0.77	0.78	0.62	0.50	0.10	0.19	0.61	1.30	1.90	0.76	2.73	0.86	7.74	2.09	0.54	0.96
Р	188	149	145	271	135	126	178	193	172	259	120	156	132	250	135	331
Ca	1.01	1.48	10.3	26.7	1.35	0.55	21.2	0.57	0.83	22.6	13.9	9.25	25.6	10.9	24.1	34.3
Ti	22.5	19.4	17.8	13.5	15.9	17.2	17.0	19.6	16.9	21.0	14.2	18.7	23.8	16.8	22.4	36.9
Sr	0.50	0.41	0.51	0.52	0.37	0.32	0.40	0.35	0.29	0.53	0.30	0.40	0.62	0.46	0.69	0.91
Y	1008	994	1016	1247	1005	733	1047	944	683	1133	480	758	446	748	1204	2968
Nb	32.1	29.7	21.8	17.4	19.1	13.5	16.4	20.2	22.8	14.5	16.6	13.8	9.58	23.0	8.78	32.5
Ba	1.22	1.19	0.85	1.28	0.60	1.04	1.11	0.74	0.82	2.06	1.31	0.63	2.50	1.46	2.00	2.57
Hf	12014	11673	11023	9657	9762	12319	10211	10033	10036	10851	10158	10777	17098	10899	10661	9461
Th	129	108	102	81.1	61.1	68.6	82.9	68.8	48.4	128	88.6	64.9	13.2	84.6	82.7	415
U	375	322	305	191	155	242	220	191	145	297	173	164	283	235	240	837
Th/U	0.34	0.34	0.33	0.42	0.40	0.28	0.38	0.36	0.33	0.43	0.51	0.40	0.05	0.36	0.34	0.50
Eu/Eu*	0.06	0.04	0.06	0.12	0.18	0.04	0.09	0.14	0.13	0.08	0.92	0.17	1.03	0.46	0.31	0.13
Ce/Ce*	21.8	22.5	56.9	26.6	9.49	43.0	10.6	33.0	3.34	2.73	1.28	2.78	1.29	2.50	1.12	4.46
ΣREE	713	685	696	840	680	524	709	634	478	897	367	549	472	585	866	1892

Таблица В.6 – Содержание редких и редкоземельных элементов (ррт) в цирконе из кварцитов (обр. 831-1)

Продолжение таблицы В.6

Компо- нент	2.1	3.1	4.1	6.1	7.1	9.1	10.1	11.1	1.1	5.1	8.1	12.1	12.1	13.1	14.1	15.1
ΣLREE	21.1	22.1	18.5	14.0	14.6	14.2	17.2	12.3	23.4	85.4	18.1	31.8	23.2	41.1	45.5	112
ΣHREE	689	659	674	819	660	508	687	618	452	801	346	514	447	537	813	1766
Lu _N /La _N	1714	2210	9511	13787	1918	4656	1246	7037	190	117	94.5	192	123	87.8	60.2	120
Lu_N/Gd_N	23.9	20.8	19.5	15.2	16.8	24.9	16.6	19.0	20.8	16.0	50.9	20.4	151	16.4	16.5	13.9
Sm _N /La _N	15.7	24.2	112	238	27.7	37.3	16.2	86.8	2.40	3.41	0.64	2.74	0.31	1.76	0.98	2.15
T(Ti), ℃	820	805	797	770	786	793	792	806	791	813	775	801	826	791	820	873

Компо- нент	1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1	11.1	12.1	16.1	17.1	18.1	19.1	20.1	21.1	22.1	23.1
La	0.19	0.12	0.16	0.16	0.15	0.55	0.13	0.18	0.07	0.34	0.12	0.22	0.97	0.37	1.04	0.17	0.13	0.07	0.46	1.27
Ce	57.8	9.3	26.5	8.5	23.0	13.2	28.1	19.6	34.7	13.5	12.1	19.8	25.1	19.8	52.8	6.02	16.3	9.38	44.2	41.7
Pr	0.35	0.15	0.23	0.07	0.17	0.74	0.11	0.22	0.16	0.26	0.35	0.10	0.26	0.31	2.05	0.22	0.40	0.16	0.32	0.62
Nd	2.52	1.29	2.47	1.07	2.43	5.35	1.52	1.91	2.76	2.44	5.81	1.41	2.18	2.29	19.0	2.77	7.24	1.20	3.43	4.63
Sm	3.61	2.21	4.31	2.57	6.38	4.04	2.76	3.03	5.97	3.70	8.75	2.40	3.61	2.28	17.3	3.28	13.90	1.69	7.10	6.57
Eu	0.40	0.37	0.32	0.56	0.40	0.38	0.37	0.24	0.34	1.42	0.64	0.17	0.70	0.75	1.40	0.95	1.93	0.55	1.46	0.59
Gd	16.6	12.3	21.1	16.0	41.2	14.1	17.0	14.8	30.3	23.3	45.0	10.8	17.1	7.35	48.9	14.1	76.0	7.98	43.2	32.1
Dy	73.8	48.1	86.0	78.0	198	49.8	71.8	60.3	111	81.0	143	39.2	56.6	25.0	128	48.3	308	33.81	196	123
Er	168	113	165	188	434	95.0	169	129	230	161	249	77.5	120	61.7	232	114	591	88.6	432	269
Yb	333	217	286	365	763	178	321	244	392	314	371	133	215	157	405	260	973	226	743	508
Lu	54.4	37.0	52.7	65.7	120	28.5	53.5	38.6	65.0	48.8	61.5	23.6	34.7	29.1	59.8	45.0	148	43.2	125	83.0
Li	0.70	2.63	4.83	1.58	1.62	4.68	0.58	2.44	0.76	1.02	0.10	2.32	0.98	3.13	8.79	0.48	5.52	0.65	5.34	5.12
Р	186	139	266	290	584	74.3	239	123	208	195	76.2	154	176	125	440	125	672	82.6	729	375
Ca	2.00	6.28	5.58	2.79	8.99	18.35	2.71	16.1	3.63	41.7	1.22	3.86	7.94	69.3	92.2	18.3	13.6	62.5	20.7	119
Ti	19.8	13.2	20.5	16.4	19.6	23.2	15.6	18.4	19.6	22.3	22.6	18.5	18.4	14.2	21.8	20.9	24.6	16.9	24.5	32.3
Sr	0.48	0.59	0.89	0.53	1.00	0.93	0.60	2.31	0.55	2.11	0.39	0.23	0.74	7.73	8.57	0.26	1.99	1.82	1.93	4.98
Y	842	584	917	938	2277	533	862	704	1231	964	1407	446	639	324	1331	658	3214	451	2226	1377
Nb	47.3	23.3	26.0	23.6	30.7	17.8	18.6	17.1	20.3	36.8	41.8	18.8	25.4	17.3	29.7	45.4	22.4	4.84	29.8	37.0
Ba	2.58	0.98	2.07	2.07	1.76	1.89	2.17	3.35	0.68	8.89	1.25	1.80	2.35	4.39	4.77	1.89	2.71	3.30	1.83	3.53
Hf	12416	10693	12117	11989	13219	13222	12014	12733	11519	8921	11156	11897	10694	12884	14955	10858	11199	10883	10883	13248
Th	185	35.8	194	69.0	240	85.0	78.0	99.0	241	129	172	90.6	81.5	50.2	274	60.5	219	39.4	315	298
U	369	101	629	250	628	320	173	312	592	371	455	174	199	219	695	205	546	159	1268	950
Th/U	0.50	0.35	0.31	0.28	0.38	0.27	0.45	0.32	0.41	0.35	0.38	0.52	0.41	0.23	0.39	0.29	0.40	0.25	0.25	0.31
Eu/Eu*	0.16	0.22	0.10	0.27	0.08	0.16	0.16	0.11	0.08	0.47	0.10	0.10	0.27	0.56	0.15	0.42	0.18	0.46	0.25	0.12
Ce/Ce*	55.1	16.8	33.4	19.7	34.9	5.00	57.3	23.9	79.4	11.1	14.3	32.1	12.1	14.0	8.74	7.57	17.5	21.4	27.8	11.3
ΣREE	711	441	645	726	1588	390	666	512	872	650	897	308	476	306	967	495	2136	413	1595	1071

Таблица В.7 – Содержание редких и редкоземельных элементов (ppm) в цирконе из кварцитов (обр. 523)

Продолжение таблицы В.7

Компо- нент	1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1	11.1	12.1	16.1	17.1	18.1	19.1	20.1	21.1	22.1	23.1
ΣLREE	60.8	10.9	29.3	9.82	25.7	19.8	29.8	21.9	37.6	16.5	18.4	21.5	28.5	22.7	75.0	9.18	24.0	10.8	48.4	48.2
ΣHREE	646	427	611	713	1555	365	633	487	828	628	869	284	443	280	874	482	2096	400	1538	1016
Lu _N /La _N	2813	3012	3133	3925	7719	499	4050	2067	8920	1377	4934	1044	343	754	552	2594	11141	5781	2595	628
Lu_N/Gd_N	26.5	24.3	20.2	33.3	23.5	16.3	25.4	21.1	17.4	16.9	11.0	17.8	16.4	32.0	9.89	25.8	15.8	43.8	23.3	20.9
Sm _N /La _N	31.0	29.9	42.5	25.5	68.4	11.7	34.7	27.0	136	17.4	117	17.6	5.94	9.81	26.5	31.5	174	37.5	24.6	8.26
<i>T</i> (Ti), °C	807	768	811	788	806	823	784	800	806	819	820	800	800	775	817	812	829	791	829	858

Таблица В.8 – Содержание редких и редкоземельных элементов (ppm) в цирконе из кварцитов (обр. 823-1)

Компо-	1.1	5.1	11.1	8.1	4.2	3.2	6.2	10.2	12.2
нент	ядро	ядро	ядро	ядро	оболочка	оболочка	оболочка	оболочка	оболочка
La	1.98	0.76	0.58	0.09	0.03	0.07	0.07	0.18	0.06
Ce	32.8	47.6	11.5	17.3	13.2	15.7	13.0	12.9	19.0
Pr	1.23	1.30	0.61	0.11	0.04	0.08	0.06	0.18	0.09
Nd	8.30	13.7	5.19	2.27	0.70	1.59	1.04	5.15	1.48
Sm	7.38	14.8	6.19	4.31	1.54	2.72	2.80	20.4	3.07
Eu	2.46	3.04	0.47	1.16	0.25	0.79	0.37	3.76	0.46
Gd	31.8	52.7	25.6	23.1	9.67	13.24	9.44	50.9	21.1
Dy	116	157	80.2	96.2	42.8	50.3	26.0	78.2	86.8
Er	290	321	154	216	71.2	73.6	39.8	94.6	145
Yb	608	583	238	406	80.7	73.5	52.01	111	166
Lu	109	103	37.7	71.1	11.0	9.39	7.13	16.2	21.3
Li	0.60	5.98	1.57	2.82	3.14	6.09	2.96	2.95	1.32
Р	388	519	329	373	154	199	118	668	184
Ca	13.2	125	464	1.46	2.37	3.01	2.19	12.0	56.4
Ti	14.5	32.2	12.9	12.1	16.9	16.5	17.1	15.1	15.3
Sr	0.58	2.68	1.77	0.39	b.d.l.	b.d.l.	0.15	0.31	1.06
Y	1595	1851	915	1253	466	532	300	767	1012
Nb	8.29	6.99	6.98	6.98	7.18	10.11	4.21	5.65	8.77
Ba	2.44	2.75	4.22	1.16	0.74	0.75	1.58	7.78	1.64
Hf	6905	9319	6804	6758	10040	10182	9278	10084	9609
Th	58.3	209	91.0	48.6	89.3	97.3	63.2	62.7	132
U	176	430	291	128	90.1	92.8	77.5	63.9	108
Th/U	0.33	0.49	0.31	0.38	0.99	1.05	0.82	0.98	1.22
Eu/Eu*	0.49	0.33	0.11	0.35	0.20	0.40	0.22	0.36	0.18
Ce/Ce*	5.09	11.6	4.68	43.0	105	52.8	45.7	17.7	60.8
ΣREE	1209	1298	560	838	231	241	152	394	464
ΣLREE	44.3	63.4	17.9	19.8	14.0	17.5	14.1	18.4	20.7
ΣHREE	1155	1217	536	812	215	220	134	351	440
Lu_N/La_N	532	1300	625	7860	4186	1383	919	886	3248
Lu_N/Gd_N	27.9	15.8	11.9	24.9	9.21	5.74	6.11	2.57	8.19
Sm_N/La_N	5.96	31.2	17.0	79.2	97.4	66.6	59.9	186	77.6
<i>T</i> (Ti), °C	777	858	766	760	792	789	793	781	782

Компо-				основные	e				средние	
нент	1	1	1	1	1	1	1	2	2	2
La	0.80	2.52	0.42	11.2	0.56	0.10	9.6	1.02	2.75	0.35
Ce	2.68	9.51	1.61	59.9	3.76	0.79	79.7	6.69	36.4	7.04
Pr	0.28	0.95	0.24	8.55	0.22	0.02	5.71	0.78	1.19	0.53
Nd	1.58	4.97	1.15	47.2	1.21	0.11	38.8	4.44	5.95	4.69
Sm	0.91	1.84	0.55	21.0	0.59	0.11	7.21	1.56	2.47	3.06
Eu	1.15	4.50	0.90	46.1	0.79	0.08	4.49	2.43	1.64	2.40
Gd	0.81	4.02	1.08	27.3	2.24	0.29	15.3	3.60	7.28	12.6
Dy	1.40	16.9	3.09	32.0	8.18	2.48	40.5	10.9	29.8	59.2
Er	3.21	34.0	11.2	48.8	27.3	9.15	90.0	20.1	70.6	123
Yb	17.0	58.5	42.0	127	83.5	34.9	181	33.4	185	238
Lu	4.09	9.30	9.49	21.1	16.0	8.25	31.4	4.84	34.7	44.7
Li	2.73	30.6	2.04	18.6	1.52	1.24	9.43	5.27	13.5	5.55
Р	22.7	106	59.3	133	64.9	102	133	108	108	242
Ca	218	1241	53.7	2759	23.5	9.55	18.7	15.0	6.42	191
Ti	14.6	325	5.31	1562	10.1	3.97	8.81	5.89	10.8	12.0
Sr	4.54	11.3	0.19	59.8	0.78	0.20	0.74	0.29	0.39	3.34
Y	18.2	153	45.2	331	132	55.6	529	100	402	701
Nb	33.5	37.3	46.0	41.7	17.5	27.9	7.33	10.9	34.9	36.5
Ba	8.39	18.5	2.13	68.6	2.40	1.06	2.98	0.87	2.06	23.6
Hf	8520	9039	8396	6893	5721	7702	10065	11499	12595	10477
Th	21.2	168	34.4	719	33.5	11.5	218	12.6	206	26.5
U	109	1201	69.0	770	81.5	41.9	683	410	917	185
Th/U	0.19	0.14	0.50	0.93	0.41	0.28	0.32	0.03	0.23	0.14
Eu/Eu*	4.09	5.05	3.56	5.87	2.09	1.37	1.30	3.13	1.18	1.18
Ce/Ce*	1.38	1.48	1.23	1.48	2.58	3.99	2.60	1.81	4.87	3.93
ΣREE	33.9	147	71.7	450	144	56.3	504	89.8	378	496
ΣLREE	5.35	18.0	3.42	127	5.75	1.01	134	12.9	46.3	12.6
ΣHREE	26.5	123	66.8	256	137	55.1	358	72.8	327	478
Lu _N /La _N	49.1	35.5	217	18.2	277	827	31.5	45.8	122	1216
Lu_N/Gd_N	40.7	18.7	70.9	6.3	57.7	230	16.5	10.9	38.6	28.7
Sm _N /La _N	1.81	1.17	2.10	3.00	1.71	1.78	1.20	2.46	1.44	13.9

Таблица В.9 – Содержание редких и редкоземельных элементов (ppm) в цирконе из гранулитов далдынской серии с положительной Eu-аномалией

Компо-	средние				КИ	слые				квар	циты
нент	2	3	3	3	3	3	3	3	3	4	4
La	1.90	0.61	11.5	56.0	42.2	1.63	1.60	2.03	17.8	3.19	11.4
Ce	12.8	10.5	82.5	232	254	13.3	16.4	15.5	27.4	18.2	67.9
Pr	1.18	0.44	5.98	28.1	33.7	1.19	0.77	0.67	1.13	1.68	8.91
Nd	7.96	2.90	38.1	135	285	6.24	3.95	3.15	3.51	6.01	50.8
Sm	5.05	1.86	15.7	26.5	78.2	3.73	1.22	1.15	0.69	0.97	8.15
Eu	4.40	2.51	12.3	33.6	27.6	2.34	1.83	1.05	0.94	1.25	3.55
Gd	11.4	9.09	26.4	12.9	62.4	10.3	3.02	3.73	3.07	4.51	8.53
Dy	49.3	37.9	52.1	24.0	31.1	31.2	12.0	17.0	20.5	18.3	12.3
Er	103	94.9	99.4	36.2	54.6	80.7	35.0	45.3	62.9	52.1	33.3
Yb	194	203	178	72.4	159	181	97.0	124	177	137	97.0
Lu	32.1	38.0	27.6	12.9	32.8	32.7	19.4	24.6	38.3	24.4	18.4
Li	9.24	1.95	19.8	64.3	43.3	2.14	9.72	11.36	9.25	1.49	5.32
Р	329	119	455	42.0	164	125	66.9	66.0	109	39.1	33.7
Ca	372	7.04	1874	884	571	31.3	4.03	20.4	135	56.9	62.3
Ti	12.6	14.4	14.9	23.1	8.21	17.9	6.88	8.74	14.8	24.0	7.38
Sr	4.99	0.38	43.5	11.6	17.2	1.12	0.57	0.63	5.08	2.18	1.56
Y	662	491	651	236	327	410	156	236	307	263	174
Nb	22.1	18.1	29.6	15.2	9.81	65.9	12.4	18.6	37.9	23.9	22.1
Ba	28.7	1.18	51.0	15.1	22.0	11.4	1.29	2.05	1.91	2.68	1.12
Hf	8078	10371	8028	10492	13051	10179	15124	13032	12697	11860	12533
Th	23.5	127	230	78.8	62.1	22.8	56.2	100	33.9	18.7	108
U	128	203	1011	1696	1092	119	701	786	140	300	491
Th/U	0.18	0.63	0.23	0.05	0.06	0.19	0.08	0.13	0.24	0.06	0.22
Eu/Eu*	1.77	1.86	1.84	5.52	1.21	1.15	2.92	1.54	1.99	1.82	1.30
Ce/Ce*	2.07	4.89	2.41	1.42	1.63	2.32	3.58	3.22	1.48	1.91	1.63
ΣREE	424	402	550	670	1060	364	192	239	353	268	320
ΣLREE	23.9	14.4	138	451	615	22.4	22.7	21.4	49.8	29.1	139
ΣHREE	390	383	384	158	340	336	166	215	302	237	169
Lu_N/La_N	163	597	23.2	2.23	7.47	194	116	117	20.8	73.8	15.5
Lu_N/Gd_N	22.7	33.8	8.46	8.09	4.25	25.7	51.9	53.3	101	43.7	17.4
Sm _N /La _N	4.25	4.86	2.20	0.76	2.96	3.67	1.21	0.91	0.06	0.49	1.14

Продолжение таблицы В.9

Компо-		I	Циркон из	Авторо основных і	ские тород (59 ан	нализов)		
ненты	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%
La	3.59	0.56	0.03	36.3	0.13	2.52	0.07	13.8
Ce	26.0	11.7	0.79	145	7.52	36.5	3.76	69.1
Pr	1.42	0.41	0.01	12.6	0.14	0.95	0.07	5.71
Nd	8.84	3.65	0.05	78.8	1.58	8.97	0.70	32.0
Sm	5.30	3.72	0.11	22.0	1.38	7.53	0.59	13.3
Eu	2.05	0.81	0.04	46.1	0.42	1.53	0.15	3.03
Gd	21.1	15.3	0.29	70.2	6.05	28.5	1.60	48.3
Dy	76.7	59.5	1.40	320	24.5	96.2	5.69	197
Er	164	139	3.21	740	51.0	212	16.6	391
Yb	303	288	17.0	1310	129	424	42.0	605
Lu	51.8	50.7	4.09	197	21.7	72.7	9.49	97.0
Li	6.26	3.58	0.15	39.8	1.96	7.86	0.70	17.3
Р	204	133	0.01	1265	88.0	240	22.7	472
Ca	215	20.6	0.16	2759	2.91	134	1.03	1084
Ti	47.9	12.1	2.07	1562	9.36	16.6	6.87	23.8
Sr	2.91	0.75	0.02	59.8	0.41	1.30	0.20	6.10
Y	940	788	18.2	4092	334	1230	77.1	2231
Nb	28.9	20.0	2.93	145	9.73	36.0	7.33	72.9
Ba	4.23	1.69	0.45	68.6	1.10	3.08	0.83	5.03
Hf	8161	8394	5117	12231	6706	9439	6039	10356
Th	147	121	4.37	719	59.0	194	33.5	287
U	445	301	37.4	2063	180	647	81.5	1109
Th/U	0.48	0.31	0.05	3.77	0.22	0.54	0.13	0.70
Eu/Eu*	0.72	0.36	0.05	5.87	0.24	0.56	0.12	1.37
Ce/Ce*	11.6	7.09	0.91	55.2	2.42	19.6	1.48	30.8
ΣREE	664	576	33.9	2631	301	911	84.8	1413
ΣLREE	39.8	17.8	1.01	255	10.6	43.9	5.3	128
ΣHREE	617	564	26.5	2614	256	831	74.6	1377
Lu _N /La _N	2509	756	13.4	12576	99.6	4742	31.3	8275
Lu_N/Gd_N	35.4	22.9	6.26	230	14.7	35.9	11.9	69.4
Sm _N /La _N	29.9	5.21	0.25	201	1.94	35.5	1.17	110

Таблица В.10 – Обобщенные характеристики состава циркона из исследуемых объектов

Компо- ненты	Авторские Циркон из средних пород (30 анализов) *									
	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%		
La	1.19	0.72	0.04	4.71	0.13	1.90	0.06	3.35		
Ce	19.1	13.1	4.80	67.7	9.60	22.7	6.66	39.6		
Pr	0.94	0.53	0.02	4.89	0.15	1.19	0.04	2.39		
Nd	6.13	3.59	0.21	32.1	1.41	7.96	0.45	15.4		
Sm	3.65	2.75	0.53	12.0	1.06	5.05	0.71	8.37		
Eu	1.24	0.77	0.04	4.40	0.34	1.69	0.21	3.18		
Gd	11.8	7.45	2.31	54.3	4.54	13.0	2.94	30.0		
Dy	41.9	27.6	8.99	187	16.7	52.1	11.6	99.3		
Er	89.8	52.1	20.1	371	33.1	110	29.6	235		
Yb	181	104	33.4	651	78.2	232	58.7	456		
Lu	32.0	20.4	4.84	115	13.8	36.8	11.8	77.1		
Li	7.50	5.19	0.18	30.8	2.94	9.24	1.59	17.0		
Р	206	127	35.3	1275	84.8	271	55.7	401		
Ca	67.2	25.1	2.65	372	10.7	108	6.42	191		
Ti	17.2	12.4	5.89	72.6	9.79	17.1	9.24	29.2		
Sr	0.97	0.46	0.03	4.99	0.33	1.38	0.22	2.51		
Y	500	339	100	2082	197	653	170	1182		
Nb	24.2	18.4	2.90	86.4	9.23	34.9	5.40	48.4		
Ba	4.20	1.92	0.51	28.7	0.92	3.60	0.63	9.78		
Hf	10048	9904	7413	13762	8957	11099	7896	12428		
Th	104	71.6	12.1	418	45.3	110	25.0	232		
U	394	321	76.1	1489	154	490	128	922		
Th/U	0.34	0.30	0.03	0.80	0.13	0.59	0.08	0.62		
Eu/Eu*	0.66	0.50	0.06	3.13	0.35	0.70	0.24	1.18		
Ce/Ce*	15.4	5.59	1.62	60.6	2.75	28.1	1.94	44.6		
ΣREE	389	269	89.8	1419	164	496	139	886		
ΣLREE	26.9	19.9	1.02	91.1	11.8	32.2	7.59	61.4		
ΣHREE	357	216	72.8	1347	141	478	127	875		
Lu _N /La _N	1239	441	35.6	8537	122	2266	55.0	3270		
Lu_N/Gd_N	28.3	26.9	1.85	90.3	16.9	38.4	12.8	43.9		
Sm _N /La _N	13.1	5.82	1.44	98.3	3.30	17.0	2.75	28.2		

Продолжение таблицы В.10

* для Са 19 анализов

Компо- ненты	Авторские Циркон из кислых пород (86 анализов)									
	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%		
La	7.10	0.46	0.05	128	0.20	2.35	0.12	26.9		
Ce	53.4	26.2	1.79	324	13.3	60.5	8.05	136		
Pr	4.09	0.65	0.03	41.9	0.21	1.79	0.09	14.0		
Nd	28.0	4.32	0.21	376	1.52	14.2	0.66	80.4		
Sm	11.3	4.42	0.28	115	1.86	10.2	0.88	26.5		
Eu	3.69	0.93	0.07	41.7	0.33	2.51	0.18	10.2		
Gd	26.5	16.9	0.69	162	9.09	34.9	3.73	61.2		
Dy	88.8	67.1	3.03	388	31.2	131	17.0	188		
Er	204	125	15.8	710	63.8	303	39.7	476		
Yb	423	248	54.6	1551	152	573	90.2	958		
Lu	71.1	47.0	9.66	253	26.9	94.9	15.2	157		
Li	15.1	7.08	0.157	74.7	3.28	13.3	1.36	52.4		
Р	393	201	11.8	5188	109	467	59.2	747		
Ca	362	22.3	0.26	9236	4.03	78.7	1.51	619		
Ti	19.8	14.3	6.42	147	9.95	20.3	8.51	31.9		
Sr	4.97	0.91	0.11	64.6	0.57	2.23	0.38	11.6		
Y	1107	729	54.6	4360	390	1618	236	2341		
Nb	38.6	29.2	4.47	178	18.1	47.4	8.55	74.0		
Ba	6.20	2.22	0.36	58.2	1.54	5.02	0.97	18.1		
Hf	10600	10619	5817	15322	8932	12418	7317	13655		
Th	202	143	3.19	936	80.7	245	53.3	415		
U	900	711	42.8	3880	291	1172	128	2027		
Th/U	0.41	0.27	0.02	1.38	0.10	0.63	0.06	0.90		
Eu/Eu*	0.57	0.35	0.06	5.52	0.20	0.68	0.11	1.10		
Ce/Ce*	17.1	8.44	1.11	81.8	2.62	20.1	1.64	43.8		
ΣREE	920	699	141	3354	357	1364	218	1954		
ΣLREE	92.6	30.2	2.84	757	15.2	70.22	10.5	271		
ΣHREE	813	502	117	2714	302	1173	171	1866		
Lu _N /La _N	1829	1142	2.01	11817	117	2506	23.2	4645		
Lu_N/Gd_N	42.1	26.2	2.85	402	10.8	53.3	7.19	81.9		
Sm _N /La _N	21.9	8.56	0.06	138	3.29	18.2	1.09	72.9		

Продолжение таблицы В.10
Компо-	Авторские Циркон из кварцитов (51 анализ)													
ненты	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%						
La	8.15	2.04	0.04	217	0.46	4.96	0.10	11.9						
Ce	52.3	32.8	4.98	465	12.6	52.0	10.1	113						
Pr	4.93	1.59	0.01	81.6	0.32	5.38	0.16	8.91						
Nd	25.2	8.30	0.07	383	3.51	27.8	1.77	43.2						
Sm	7.46	5.94	0.15	29.9	2.61	9.76	1.41	15.6						
Eu	1.90	1.25	0.06	9.13	0.50	2.94	0.26	4.15						
Gd	22.8	16.2	0.77	73.6	9.13	31.8	5.50	46.8						
Dy	75.8	61.9	3.87	273	32.6	114	12.3	141						
Er	166	142	3.07	541	77.6	219	22.4	321						
Yb	323	256	4.71	1157	190	389	97.0	608						
Lu	53.7	42.3	0.67	199	31.2	64.6	18.4	106						
Li	2.72	1.57	0.02	21.7	0.76	3.13	0.42	5.53						
Р	228	201	0.01	982	106	272	58.5	388						
Ca	68.4	20.7	0.51	1436	9.25	55.4	1.18	75.6						
Ti	22.4	22.4	2.94	55.6	16.8	28.2	9.82	32.2						
Sr	1.78	0.83	0.27	29.0	0.53	1.82	0.36	2.31						
Y	908	761	27.5	3080	446	1292	61.2	1851						
Nb	38.7	23.8	4.84	157	15.9	53.3	9.58	83.6						
Ba	2.51	2.06	0.24	8.16	1.31	3.47	0.82	4.39						
Hf	10171	10036	6804	17098	8666	11357	7765	12733						
Th	106	84.6	4.41	415	50.2	118	39.4	209						
U	366	250	23.2	1834	170	430	88.7	837						
Th/U	0.38	0.34	0.03	1.14	0.24	0.46	0.10	0.57						
Eu/Eu*	0.48	0.44	0.07	1.82	0.18	0.63	0.13	0.92						
Ce/Ce*	9.13	3.79	0.85	58.2	2.30	11.0	1.72	22.5						
ΣREE	741	585	32.7	2250	390	918	268	1487						
ΣLREE	90.6	45.5	5.11	1146	19.9	85.4	12.8	159						
ΣHREE	641	529	16.3	2106	346	830	169	1217						
Lu _N /La _N	911	161	2.56	7568	73.8	982	30.2	3274						
Lu_N/Gd_N	26.6	20.4	1.43	151	15.1	27.7	6.52	44.4						
Sm _N /La _N	13.4	4.26	0.16	149	2.31	12.0	0.98	31.2						

Продолжение таблицы В.10

Компо- ненты	Зарубежные Циркон из основных пород (86 анализов)								Зарубежные Циркон из средних пород (91 анализ)								
	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%	
La	0.24	0.07	0.00	6.10	0.02	0.12	0.01	0.29	0.60	0.08	0.01	18.93	0.04	0.21	0.02	0.63	
Ce	6.96	5.39	0.44	39.6	2.50	9.50	1.71	13.0	17.0	7.17	0.04	113	1.52	25.7	0.66	52.8	
Pr	0.18	0.06	0.00	6.10	0.02	0.11	0.01	0.22	0.53	0.14	0.01	6.40	0.05	0.42	0.02	1.26	
Nd	1.51	0.73	0.02	44.6	0.25	1.14	0.13	2.28	4.34	1.90	0.05	35.6	0.90	5.49	0.41	9.72	
Sm	1.48	1.07	0.08	10.6	0.54	1.83	0.21	3.00	5.57	3.60	0.03	18.9	1.99	8.05	0.58	13.6	
Eu	0.36	0.27	0.06	1.40	0.19	0.42	0.11	1.00	0.74	0.51	0.01	4.20	0.20	0.98	0.07	1.61	
Gd	5.55	4.02	0.67	22.5	2.28	7.18	1.69	11.8	19.6	16.5	0.30	55.0	8.19	27.6	2.68	45.2	
Dy	26.0	14.2	1.18	170	8.70	31.8	6.17	68.0	48.8	32.6	1.22	273	17.5	74.0	8.54	112	
Er	49.4	30.3	0.93	319	11.5	67.0	8.18	109	72.3	28.4	2.01	514	16.9	96.0	7.75	215	
Yb	103	57.3	1.56	688	17.1	124	11.0	255	125	37.7	1.21	978	19.4	172	6.69	398	
Lu	17.9	9.73	0.28	112	2.78	20.19	1.89	43.0	21.7	6.28	0.32	203	3.22	30.0	1.15	62.5	
Eu/Eu*	0.38	0.40	0.79	0.28	0.52	0.35	0.56	0.51	0.22	0.20	0.32	0.40	0.15	0.20	0.17	0.20	
Ce/Ce*	8.10	20.1	_	1.57	30.2	20.0	41.4	12.5	7.29	16.4	0.97	2.48	8.22	20.9	7.98	14.3	
ΣREE	213	123	5	1420	45.9	263	31.1	507	316	135	5.21	2220	69.9	440	28.6	912	
ΣLREE	8.89	6.25	0.46	96.4	2.79	10.9	1.86	15.8	22.5	9.29	0.11	174	2.51	31.8	1.11	64.4	
ΣHREE	202	116	4.62	1312	42.4	250	28.9	487	287	121	5.06	2023	65.2	400	26.8	833	
Lu _N /La _N	719	1339	_	177	1339	1621	1821	1429	348	756	308	103	776	1376	554	956	
Lu _N /Gd _N	26.1	19.6	3.38	40.3	9.86	22.7	9.05	29.5	8.96	3.08	8.63	29.9	3.18	8.79	3.47	11.2	
Sm _N /La _N	9.88	24.5	_	2.78	43.2	24.4	33.6	16.6	14.9	72.1	4.80	1.60	79.7	61.4	46.4	34.6	

Таблица В.11 – Обобщенные характеристики состава циркона из зарубежных объектов

Продолжение таблицы В.11

Компо- ненты	Зарубежные Циркон из кислых пород (135 анализов)									Зарубежные Циркон из кварцитов (10 анализов)								
	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%	Среднее	Медиа- на	Min	Max	Lower Quartile	Upper Quartile	10%	90%		
La	46.5	0.38	0.01	2603	0.10	6.36	0.05	55.2	0.18	0.03	0.01	1.23	0.01	0.12	0.01	0.76		
Ce	119	20.7	0.60	2610	8.94	51.7	3.30	240	43.4	21.8	10.5	225	12.7	41.7	10.5	137		
Pr	40.8	0.56	0.01	2689	0.12	4.77	0.06	28.2	0.42	0.10	0.07	2.36	0.07	0.57	0.07	1.50		
Nd	74.3	5.25	0.04	1456	1.70	33.3	0.92	145	3.54	1.44	0.77	15.1	1.00	4.85	0.85	11.0		
Sm	87.7	6.80	0.17	4957	2.70	19.8	1.30	42.8	4.13	3.59	1.43	8.71	2.28	4.42	1.85	8.55		
Eu	22.1	0.90	0.02	650	0.27	4.00	0.10	15.6	1.60	1.03	0.30	4.68	0.57	2.53	0.33	3.73		
Gd	56.4	21.1	1.02	1216	11.6	44.0	4.55	86.5	25.4	22.1	12.1	39.9	19.5	36.0	12.7	38.7		
Dy	114	59.8	1.81	1838	22.0	113	10.0	217	84.0	67.6	39.9	143	56.9	128	40.9	137		
Er	191	108	1.00	3268	25.0	201	8.40	394	154	120	67.6	287	87.8	242	76.1	280		
Yb	345	210	2.00	5681	43.0	400	9.60	687	335	252	162	619	205	540	172	615		
Lu	56.0	36.6	0.20	884	6.30	66.4	1.70	106	66.0	51.7	32.4	117	44.4	102	35.5	116		
Eu/Eu*	0.96	0.23	0.15	0.81	0.15	0.41	0.12	0.78	0.48	0.35	0.22	0.77	0.26	0.61	0.21	0.63		
Ce/Ce*	0.66	10.9	14.5	0.24	19.7	2.27	14.6	1.47	38.0	98.0	140	31.9	117	38.6	121	31.1		
ΣREE	1153	470	6.88	27852	122	944	40.0	2017	718	542	327	1463	430	1102	351	1350		
ΣLREE	280	26.9	0.66	9358	10.9	96.1	4.33	469	47.5	23.3	11.4	243	13.7	47.2	11.5	151		
ΣHREE	762	436	6.03	12887	108	824	34.3	1490	665	514	314	1206	413	1047	337	1187		
Lu _N /La _N	11.6	928	193	3.27	607	101	328	18.4	3521	17545	62410	915	42766	8243	51025	1471		
Lu _N /Gd _N	8.03	14.0	1.59	5.88	4.39	12.2	3.02	9.86	21.0	19.0	21.7	23.7	18.5	22.9	22.7	24.3		
Sm _N /La _N	3.02	28.7	27.2	3.05	43.2	4.99	41.6	1.24	36.6	202	458	11.3	365	59.5	441	18.0		