Малеванный Дмитрий Владимирович

ОБОСНОВАНИЕ И ВЫБОР КРИТЕРИЕВ И ТЕХНОЛОГИЧЕСКИХ ТРЕБОВАНИЙ К ТРАНСПОРТИРОВКЕ И ПОДЪЕМУ ЖМК С МОРСКОГО ДНА

Специальность 2.8.8. Геотехнология, горные машины

Автореферат диссертации на соискание ученой степени кандидата технических наук

Санкт-Петербург – 2025

Диссертация выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Санкт-Петербургский горный университет императрицы Екатерины II».

Научный руководитель:

кандидат технических наук

Сержан Сергей Леонидович

Официальные оппоненты:

Шишлянников Дмитрий Игоревич

доктор технических наук, доцент, федеральное государственное автономное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет», кафедра «Горная электромеханика», профессор;

Зотов Василий Владимирович

кандидат технических наук, федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС», кафедра горного оборудования, транспорта и машиностроения, исполняющий обязанности заведующего кафедрой.

Ведущая организация — федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева», г. Кемерово.

Защита диссертации состоится **17 сентября 2025 г. в 15:30** на заседании диссертационного совета ГУ.2 Санкт-Петербургского горного университета императрицы Екатерины II по адресу: 199106, г. Санкт-Петербург, 21-я линия В.О., д. 2, аудитория № **3321.**

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского горного университета императрицы Екатерины II и на сайте www.spmi.ru.

Автореферат разослан 17 июля 2025 г.

УЧЕНЫЙ СЕКРЕТАРЬ диссертационного совета КОВАЛЬСКИЙ Евгений Ростиславович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

В условиях постепенного исчерпания наземных запасов твердых полезных ископаемых (ТПИ) и возрастающего спроса на редкие и стратегически значимые металлы, расширение минерально-сырьевой базы приобретает первостепенное значение. Значительные запасы таких элементов, как никель, кобальт, марганец и медь, сосредоточены на глубоководных месторождениях, среди которых выделяются железомарганцевые конкреции (ЖМК). Эти месторождения распространены на значительных площадях морского дна Мирового океана на глубинах от 3500 метров и характеризуются относительно высоким содержанием полезных компонентов, простым минеральным составом, что облегчает их переработку и позволяет снизить количество образующихся отходов.

Промышленное освоение глубоководных месторождений сталкивается с рядом серьезных проблем, основная из которых связана с высоким энергопотреблением и удаленностью месторождений от стабильных источников энергии. К примеру, проект Hidden Gem компании Allseas ориентировочно потребляет от 350 до 550 кВт-ч на тонну собранных конкреций. Ключевым проблемным узлом подводного добычного комплекса является механизм транспортировки ЖМК с больших глубин на поверхность, составляющей 45% от общих энергозатрат. Проблема обусловлена высокими значениями гидростатического давления, низкими температурами и сложными гидродинамическими условиями на значительных глубинах, а также необходимостью минимизировать энергоемкость и обеспечить непрерывное, равномерное и управляемое перемещение ЖМК от морского дна до поверхности при минимальных колебаниях расхода, давления и скорости потока.

Одним из возможных решений для преодоления указанных проблем является снижение энергоемкости транспортно-технологического процесса путем исключения из промежуточной капсулы с атмосферным воздухом силового оборудования (грунтового насоса) и использования лебедки, расположенной на судне. При этом в каче-

стве источника энергии выступает гидростатическое давление, обусловленное глубиной расположения промежуточной капсулы, параметры которой обосновываются в процессе исследований.

Совершенствование технологий подъема железомарганцевых конкреций, как приоритетного объекта освоения вследствие их широкого распространения и значительных запасов, в том числе в российском разведочном районе провинции Кларион–Клиппертон, позволит обеспечить доступ к стратегически важным металлам, снизить нагрузку на наземные экосистемы и содействовать выполнению международных обязательств России по Конвенции ООН по морскому праву. Таким образом, проведение исследований, направленных на обоснование критериев и технологических требований, способствующих повышению энергоэффективности процесса подъема железомарганцевых конкреций с глубоководных месторождений, является крайне важным и своевременным направлением работы, обеспечивающим рациональное использование минерально-сырьевых ресурсов Мирового океана.

Степень проработанности темы. Значительный вклад в разработку технологий глубоководной разработки твердых полезных ископаемых России внесли ученые: Нурок Г.А., Добрецов В.Б., Маховиков Б.С., Тарасов Ю.Д., Юнгмейстер Д.А., Кириченко Ю.В., Рева Ю.В., Александров В.И., Собота Е. и др. Общий вклад в исследование машин и геотехнологии внесли зарубежные ученые $Zenghui\ Liu,\ Lu\ C.\ Y.,\ Leng\ D.,\ Wang\ S.,\ Toro\ N.,\ Knodt\ S.\ и\ др.\ Горно-геологическое исследование минеральных ресурсов Мирового океана проводили ученые: Черкашев Г.А., Юбко В.М., Пономарева И.Н. и др.$

Задачи о создании глубоководного комплекса по добыче уникальных твердых полезных искоапемых решались в рамках исследований отечественных и зарубежных научных организаций ФГБУ «ВНИИОкеангеология», ООО «ГИКО», Allseas ТМС (Швейцария), СОМRА (Китай) и др. Результаты исследований были опубликованы следующими авторами: Лаптева А.М., Голева Р.В., Collins P. C., Croot P., Carlsson J., Colaço A., Grehan A., Hyeong K. Исследования процесса погружения тела в воду и пограничного слоя жидкости проводились следующими учеными: Шлихтинг Г., Лойцянский Л. Г., Парвиз М., Ким Д.и др.

Однако, несмотря на продолжающееся развитие исследований в области освоения глубоководных месторождений, решение вопроса о снижении энергоёмкости их разработки до сих пор остаётся актуальной научной задачей.

Объект исследования — транспортно-технологический процесс подъема глубоководных твердых полезных ископаемых.

Предмет исследования – промежуточная капсула.

Цель диссертационной работы – разработка способа снижения энергоемкости процесса подъема железомарганцевых конкреций с морского дна.

Идея — снижение энергоемкости транспортно-технологического процесса путём исключения из промежуточного сосуда силового оборудования (грунтового насоса), осуществление транспортирования капсулы при помощи лебедки, расположенной непосредственно на судне, за счёт использования в качестве источника энергии гидростатического давления, определяемого глубиной расположения промежуточной капсулы.

Для достижения поставленной в диссертационном исследовании цели необходимо решить следующие задачи:

- 1. Провести анализ существующих средств и способов подъема глубоководных твердых полезных ископаемых (конкреций) с морского дна, а также горно-геологических условий залегания месторождений.
- 2. Разработать технологию подъема глубоководных твердых полезных ископаемых (конкреций) с использованием промежуточной капсулы с атмосферным воздухом. Определить рациональные параметры промежуточного сосуда.
- 3. Определить степень влияния коэффициента гидродинамического сопротивления среды на производительность и энергоемкость процесса подъема разработанной технологии с использованием промежуточной капсулы с атмосферным воздухом.

- 4. Оценить влияние массы, плотности и скорости погружения промежуточного сосуда на величину коэффициента гидродинамического сопротивления эмпирическим методом и установить характер изменения параметров экспериментальной модели капсулы при различных геометрических формах при помощи компьютерного моделирования.
- 5. Установить рациональные параметры промежуточной капсулы для разработки месторождений ЖМК с глубин более 3500 метров.

Научная новизна работы:

- 1. Сформулирован и теоретически обоснован принцип организации транспортно-технологического процесса подъема железомарганцевых конкреций, заключающийся в использовании в качестве источника энергии гидростатическое давление воды.
- 2. Получена аналитическая зависимость производительности циклично-поточной технологии подъёма железомарганцевых конкреций от геометрических и гидродинамических характеристик промежуточной капсулы, имеющая характер экспоненциального насыщения, позволяющая прогнозировать технологические показатели при изменении конструкции транспортного устройства.
- 3. Экспериментально и численно установлена зависимость коэффициента гидродинамического сопротивления цилиндрической промежуточной капсулы от коэффициента её формы, описываемая квадратичной полиномиальной функцией.

Соответствие паспорту специальности

Полученные научные результаты соответствуют паспорту научной специальности 2.8.8. Геотехнология, горные машины по п. 14 «Критерии и технологические требования при создании новых и совершенствования применяемых горных машин с учетом особенностей условий их эксплуатации при разработке месторождений твердых полезных ископаемых».

Теоретическая и практическая значимость работы:

1. Разработана конструкция промежуточной капсулы с атмосферным воздухом для подъема глубоководных твердых полезных

ископаемых на поверхность, техническим результатом которой является повышение надежности системы и энергетической эффективности, а также описан принцип работы циклично-поточной технологии разработки месторождений с применением разработанной капсулы (патент РФ на изобретение №2779867 от 13.04.2022).

- 2. Уточнены закономерности влияния геометрических параметров и формы сосуда на коэффициенты гидродинамического сопротивления, что способствует развитию теории гидродинамики применительно к специфическим условиям глубоководного транспорта.
- 3. Результаты исследований будут использованы в деятельности компании АО «ГИКО» при разработке опытного образца комплекса для глубоководной добычи ЖМК (акт о внедрении от 10.04.2025).

Методология и методы исследований: обобщение и анализ теории и практики в области глубоководной разработки твердых полезных ископаемых; математическое моделирование технологии подъема с использованием промежуточной капсулы; теоретическое и экспериментальное исследование коэффициента гидродинамического сопротивления; компьютерное моделирование перехода от экспериментальной модели к реальным условиям.

Положения, выносимые на защиту:

- 1. Циклично-поточная технология подъема твердых полезных ископаемых с глубоководных месторождений, основанная на использовании гидравлической энергии водной среды и исключения насосного оборудования при подъеме твердых полезных ископаемых с глубоководных месторождений, позволяет снизить энергоемкость процесса подъема не менее, чем на 18%.
- 2. Использование цилиндрического промежуточного сосуда с торцевыми полусферами с коэффициентом формы около 0,6 позволяет достичь наименьшего значения коэффициента сопротивления 0,35, что обеспечивает снижение энергоемкости процесса транспортирования не менее чем на 9%.

Достоверность защищаемых положений

Обоснованность и достоверность научных положений, выводов и рекомендаций основывается на корректном использовании об-

щепризнанных теорий, методов и подходов, имитационном и численном моделировании, сходимости результатов моделирования и экспериментальных исследований.

Апробация результатов. Основные результаты теоретических и экспериментальных исследований, представленные в диссертационной работе, докладывались и обсуждались на конференциях: XVIII Международный форум-конкурс студентов и молодых ученых «Актуальные проблемы недропользования» (г. Санкт-Петербург, 2022 г.); XI форум вузов инженерно-технологического профиля Союзного государства, Белорусский национальный технический университет (г. Минск, 2022 г.); XXXI Международный научный симпозиум «Неделя горняка 2023» (г. Москва, 2023 г.); Научная конференция студентов и молодых ученых «Полезные ископаемые России и их освоение» (г. Санкт-Петербург, 2023 г.); XIX Международный форума-конкурс студентов и молодых ученых «Актуальные проблемы недропользования» (г. Санкт-Петербург, 2023 г.); XX Всероссийская конференция-конкурс студентов выпускного курса и аспирантов «Актуальные проблемы недропользования» (г. Санкт-Петербург, 2024 г.).

Личный вклад автора заключается в формулировке цели и задач диссертационной работы; анализе объекта и предмета исследования; разработке методологических подходов для проведения экспериментальных исследований; разработке математической модели процесса транспортирования циклично-поточной технологии; обработке результатов исследования; подготовке публикаций.

Публикации. Результаты диссертационной работы в достаточной степени освещены в 4 печатных работах, в том числе в 2 статьях в изданиях из перечня рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук и в 2 статьях — в изданиях, входящих в международную базу данных и систему цитирования Scopus. Получены 1 патент на изобретение, 1 патент на полезную модель и 1 свидетельство на программу для ЭВМ.

Структура диссертации. Диссертация состоит из оглавления, введения, 4 глав с выводами по каждой из них, заключения и библиографического списка, содержит 135 страниц машинописного текста, 51 рисунок, 22 таблицы, список литературы из 111 наименований и 5 приложений на 8 страницах.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность диссертационного исследования, поставлены цель и задачи работы, отражены ее научная новизна, теоретическая и практическая значимость, приведены основные положения, выносимые на защиту.

В первой главе выполнен комплексный обзор современных технологий добычи глубоководных твердых полезных ископаемых, таких как железомарганцевые конкреции, кобальтоносные марганцевые корки и гидротермальные полиметаллические сульфиды. Проанализированы различные подходы, включая цикличный, поточный и двухстадийный методы добычи, указаны их преимущества и недостатки, проведена оценка энергоэффективности каждого способа и определены перспективы применения двухстадийного подъема с использованием промежуточной капсулы.

Во второй главе предложена и теоретически обоснована циклично-поточная технология подъема конкреций, основанная на использовании промежуточной капсулы с атмосферным воздухом. Проведён детальный анализ влияния геометрической формы и размеров капсулы на её гидродинамические характеристики, что позволило определить оптимальную форму (цилиндр с торцевыми полусферами), размеры и плотность капсулы, обеспечивающие наибольшую производительность при минимальных энергозатратах.

В третьей главе изложены результаты экспериментальных исследований погружения капсул в жидкость, выполненных с применением специально разработанного стенда и компьютерного моделирования. Определены коэффициенты гидродинамического сопротивления для различных форм капсул, а также подтверждены теоретические предположения о преимуществе цилиндрической формы с продольной ориентацией.

В четвертой главе представлен экономический расчёт предлагаемой технологии. В работе приводится методика расчета количества необходимых добычных судов и технических средств, представлена экономическая оценка проекта, включая капитальные и операционные расходы, сроки окупаемости и рентабельность добычи. Также рассмотрены производственные риски и предложены мероприятия по их минимизации, сделаны выводы о целесообразности реализации предложенного комплекса.

В заключении обобщены результаты исследований и экспериментов, подтверждающие эффективность применения разработанной циклично-поточной технологии подъёма с промежуточной капсулой.

Основные результаты отражены в следующих защищаемых положениях:

1. Циклично-поточная технология подъема твердых полезных ископаемых с глубоководных месторождений, основанная на использовании гидравлической энергии водной среды и исключения насосного оборудования при подъеме твердых полезных ископаемых с глубоководных месторождений, позволяет снизить энергоемкость процесса подъема не менее, чем на 18%.

Под подводной добычей твердых полезных ископаемых понимается разработка месторождений, залегающих на дне и в недрах Земли, покрытых Мировым океаном. Разработку поверхностных месторождений, к которым относятся глубоководные ТПИ (железомарганцевые конкреции (ЖМК), кобальтоносные марганцевые корки (КМК) и глубоководные полиметалические сульфиды (ГПС), в частности), планируется производить открытым способом через водную толщу. Особенность глубоководных поверхностных месторождений ТПИ заключается в том, что они залегают непосредственно на морском дне и не перекрыты пустыми породами, что в значительной степени сокращает объемы проведения горных выработок, в том числе для вскрытия и подготовки выемочных полей. При этом наиболее объемными и трудоемкими являются добычные работы.

Процесс добычи глубоководных ЖМК разделяют на два последовательных процесса: извлечение и транспортирование. Современные исследования механизмов и аппаратов для выемки конкреций позволяют увеличить полноту извлечения до 90%, а многообразие способов разработки позволяет вести деятельность практически в любых условиях и глубинах.

Однако, несмотря на успехи в разработке и внедрении отдельных компонентов, наиболее сложной и критически важной частью любого подводного добычного комплекса остается система транспортировки. Ее надежность, энергоэффективность и способность работать в условиях высоких гидростатических нагрузок определяют успешность всей операции по добыче ТПИ.

Среди существующих способов транспортирования выделяют 3 основных способа: цикличный, поточный и двухстадийный. Поточный способ в свою очередь подразделяется на эрлифтную и насосную системы.

Цикличный способ базируется на использовании специализированных грейферных устройств, которые опускают на морское дно для сбора ТПИ, после чего поднимают на поверхность. Устройство фиксируется на борту добывающего судна с помощью троса, приводимого в действие лебедочным механизмом. После выгрузки материала грейфер возвращается на дно для следующего цикла работы.

Поточный способ (рисунок 1a) предполагает непрерывное перемещение ТПИ на поверхность с использованием гидротранспортных систем или эрлифта. Гидротранспорт создает мощный восходящий поток воды в вертикальной трубе, который захватывает твердые частицы. Эрлифт (рисунок 1б), в свою очередь, использует сжатый воздух, создающий разрежение и поднимающий материал к поверхности.

Двухстадийный метод (рисунок 1в) представляет собой комбинированный подход, включающий промежуточный этап хранения ТПИ. На первой стадии материал собирается и транспортируется в специальную капсулу, размещенную на промежуточной глубине. На второй стадии капсула поднимается на поверхность с использованием поточных или механических систем. Такой метод позволяет

распределить нагрузку между различными этапами и повысить общую эффективность.

Циклично-поточный способ подъема железомарганцевых конкреций (рисунок 1г) основан на использовании гидростатического давления для транспортировки смеси жидкости и твердых частиц из донной области в промежуточные ёмкости, которые затем переносят материал на поверхность. Основной принцип работы заключается в формирования потока с требуемой критической скоростью за счет разности гидростатического давления на морском дне и атмосферного давления внутри капсулы, причем изменяя глубину погружения можно регулировать скорость потока. Особенностью данного способа является его адаптивность к условиям морской среды и работе на любых глубинах разработки.

Для каждой рассматриваемой технологии определение рациональных параметров является главной задачей. Рациональные параметры циклично-поточной технологии формируются из геометрических размеров промежуточной капсулы. Таким образом, определив форму сосуда, которой соответствуют наибольшая производительность при наименьших энергозатратах, сформируем технологические требования, предъявляемые к промежуточной капсуле.

Необходимо задать коэффициент формы, который будет отражать вытянутость капсулы (1):

$$K_f = \frac{a}{b},\tag{1}$$

где, a – радиус цилиндра, м; b – длина оси цилиндра, м.

Так как соотношение радиуса a к оси b (рисунок 2) определяет геометрическую форму капсулы, рассмотрим изменение производительности в зависимости от длины оси при различных значениях K_f (рисунок 3), а также энергозатрат (рисунок 4). Введем ограничение для максимальной длины капсулы 35 метров.

Исследуя графики, можно сделать вывод, что с увеличением длины оси капсулы энергозатраты экспоненциально растут, в то время как производительность асимптотически приближается к максимальному значению около 996 тыс. т/год.

Приведем энергетические затраты к одной тонне добываемого ЖМК, тем самым определим энергоемкость процесса транспортирования (рисунок 5), причем выставим ограничение в $10~{\rm kBt\cdot 4/t}$. Для расчета производительности и энергозатрат используются формулы из таблицы 1.

Таблица 1 — Формулы расчета производительности и потребляемой энергии типовых технологий подъема

Система	Энергозатраты, кВт·ч	Производительность, т/ч
Цикличная	$n \cdot rac{\mathcal{S}_k \cdot v_{\text{под}}}{\mu_{\Pi}}$	$\frac{V_{\scriptscriptstyle m K}}{T}$
Поточная (насос)	$n \cdot rac{\mu_{\scriptscriptstyle \Pi}}{\mu_{\scriptscriptstyle \Pi}} \ n \cdot rac{ ho_{\scriptscriptstyle CM} \cdot g \cdot H}{\mu}$	$v_{\scriptscriptstyleCM}\cdot\omega_{\scriptscriptstyleTp}\cdotC_{\scriptscriptstyleOG}$
Поточная (эр- лифт)	$n \cdot \frac{\rho_{\text{CM}} \cdot g \cdot H}{\mu} + N$	$v_{\scriptscriptstyleCM}\cdot\omega_{\scriptscriptstyleTP}\cdotC_{\scriptscriptstyleOG}$
Поточная двустадийная	$n \cdot \frac{\rho_{\text{CM}} \cdot g \cdot H}{\mu} + n \cdot \frac{S_k \cdot v_{\text{под}}}{\mu_{\text{II}}}$	$v_{\scriptscriptstyleCM}\cdot\omega_{\scriptscriptstyleTP}\cdotC_{\scriptscriptstyleOG}$
Циклично по-	$n \cdot \frac{S_k \cdot v_{\text{под}}}{n}$	$V_{\!\scriptscriptstyle m B}\cdot ho_{\Pi m H}\cdot X\cdot Z$
точная	μ_{Π}	$T \cdot 1000$

 S_k — тяговое усилие каната, H; $v_{\text{под}}$ — скорость подъема сосуда, м/c; n — количество силовых агрегатов (насос или лебедка), ит.; $\mu_{\text{п}}$ — КПД механизма; $V_{\text{к}}$ — полезный объем ковша, м3; $\rho_{\text{см}}$ — плотность гидросмеси $\textit{кг/m}^3$; $\rho_{\text{пи}}$ — плотность полезного ископаемого $\textit{кг/m}^3$; H — потребный напор системы, м.; $C_{\text{об}}$ — объемная концентрация гидросмеси; N — мощность компрессора для эрлифта, кВт/ч ($N \approx 2500$ кВт/ч); $v_{\text{см}}$ — скорость смеси, м/c; $\omega_{\text{тр}}$ — живое сечение трубопровода, $\textit{м}^2$; g — ускорение свободного падения, $\textit{м/c}^2$.

Определяя параметры для рассматриваемых технологий, можно отметить, что с точки зрения энергоемкости наиболее рациональным является поточный способ транспортирования, причем начиная с глубин 3500 метров энергоемкость процесса становится равной $10~{\rm kBr}\cdot{\rm y/r}$ и постепенно растет.

Для определения эффективных параметров циклично-поточной технологии, необходимо решить обратную задачу и, задаваясь значением энергоемкости $10~{\rm kBt\cdot u/r}$, определить характеристику производительности, соответствующую данному значению (рисунок 6). Тогда для глубин разработки $3500~{\rm metpob}$, при использовании циклично-поточной технологии подъема, наиболее рациональные значения длины оси цилиндрической формы капсулы находятся в диапазоне от $19~{\rm дo}~34~{\rm m}$, со значением коэффициента K_f от $0.9~{\rm go}~0.5~{\rm cootbet}$ ветственно, с производительностью примерно $920~{\rm tыc.}~{\rm t/rod}$, причем, чем меньше соотношение осей в указанном диапазоне, тем большей производительности можно достичь при энергоемкости процесса $10~{\rm kBr\cdot u/r}$.

Сравнив полученные характеристики каждого способа подъема глубоководных ТПИ, придем к графику, отображенному на рисунке 7. Из него можно заметить, что все представленные технологии демонстрируют значительное увеличение энергозатрат по мере роста глубины добычных операций (глубины месторождения от поверхности Океана). Это связано с увеличением гидростатического давления и сопротивления среды, которые требуют дополнительных энергетических ресурсов для подъема материала.

При глубинах акватории более 3600 метров наиболее энергоэффективной является циклично-поточная технология, так как она имеет наименьшее значение энергоемкости для указанной глубины — 10 кВт·ч/т. При максимальных глубинах разработки ЖМК разница энергопотребления между поточным и циклично-поточным способом транспортировки составляет не менее, чем 18%.

2. Использование цилиндрического промежуточного сосуда с торцевыми полусферами с коэффициентом формы около 0,6 позволяет достичь наименьшего значения коэффициента сопротивления 0,35, что обеспечивает снижение энергоемкости процесса транспортирования не менее чем на 9%.

При погружении промежуточной капсулы в жидкость возникают сложные гидродинамические явления, среди которых особое значение имеет сила сопротивления среды. Данная сила является результатом взаимодействия поверхности движущегося тела с окружающей жидкостью и формируется из нескольких компонентов, прежде всего, из сил давления и сил вязкого трения.

Сила давления возникает вследствие изменения распределения давления на передней и задней частях погружаемого тела. Исходя из формулы движения тела в воде, получим (2):

$$v = \sqrt{\frac{2(\rho_t - \rho_f) \cdot V_t g}{\rho_f C_d S}},$$
 (2)

где, ρ_t – плотность капсулы, кг/м³;

 ρ_f – плотность воды, кг/м³;

 V_t – внутренний объем капсулы, м³;

g – ускорение свободного падения, м/ c^2 ;

 C_d – коэффициент сопротивления;

S – площадь поперечного сечения, м².

Принимая объем постоянным, можно сделать вывод о наличии зависимости между плотностью (массой) капсулы, скоростью погружения и коэффициентом сопротивления среды.

На этом основании были разработаны стенд для определения скорости погружения образца в воду (рисунок 8), а также модель промежуточной капсулы (рисунок 9). По результатам эксперимента были получения значения скорости погружения и коэффициента сопротивления. Часть полученных экспериментальных данных приведена в таблице 2.

Таблица 2 – Результаты эксперимента по определению скорости по-

гружения образца капсулы в воду

Плотность кап- сулы, кг/м ³	Средняя скорость погружения, м/с	Коэффициент сопро- тивления
1200	0,1156	0,386
1300	0,2624	0,388
1400	0,4699	0,384

По результатам проведённого эксперимента было выполнено построение геометрической модели капсулы, генерация сеточной мо-

дели, проведение численного моделирования в ANSYS CFX, сравнение результатов моделирования с экспериментальными данными и анализ изменения коэффициента сопротивления среды и скорости погружения капсулы при различных геометрических конфигурациях.

Сравнение численных данных с экспериментальными подтвердило высокую точность моделирования. Расхождение в результатах между компьютерным моделированием и физическим экспериментом не превышало 6.8% (см. рисунок 10 и таблицу 2), что позволило продолжить дальнейшие исследования только на компьютерных моделях с удовлетворительной точностью.

Были смоделированы следующие формы капсулы: шарообразная, цилиндрическая с торцевыми полусферами, эллиптическая, удлинённая эллиптическая. Результаты моделирования показали, что коэффициент сопротивления среды изменяется в зависимости от формы капсулы (рисунок 11). График изменения коэффициента сопротивления для различных форм капсулы (рисунок 12) продемонстрировал, что удлинённая эллиптическая форма показала снижение коэффициента на 15% по сравнению с эллиптической формой. Это связано с уменьшением поверхностного сопротивления и более обтекаемой формой, которая минимизирует турбулентные эффекты.

Однако несмотря на сильное снижение коэффициента сопротивления, при использовании эллиптических форм происходит также и снижение производительности, вследствие уменьшения внутреннего полезного объема по сравнению с сосудом цилиндрической формы. Увеличение производительности можно достичь путем увеличения скорости подъема, но в таком случае возрастают энергозатраты лебедочного привода, что негативно отображается на энергоэффективности комплекса. Следовательно, с точки зрения предъявляемых технологических требований, наиболее рациональная форма капсулы является цилиндрической с торцевыми полусферами.

Смоделировав процесс погружения цилиндрического сосуда при одинаковом миделевом сечении, скорости и плотности сосуда (рисунок 13), получим зависимость изменения коэффициента сопротивления от коэффициента формы (рисунок 14). Рациональное значе-

ние коэффициента формы K_f цилиндрической промежуточной капсулы составляет 0,6, что соответствует наименьшему значению коэффициента сопротивления $C_d \approx 0,35$. Проведя перерасчет с новыми значениями коэффициентов формы и сопротивления, и установив необходимую производительность в 920 тыс. т/год, можно определить, что для таких K_f и C_d , значение энергоемкости процесса транспортирования составляет 9,1 кВт/т.

Полученные данные экспериментального исследования и компьютерного моделирования с целью определения скорости погружения капсулы и ее коэффициента сопротивления обобщены в таблице 3.

Таблица 3 – Рациональные показатели промежуточной капсулы

Показатель	Значение
Форма	Цилиндрическая с торцевыми полусферами
Длина оси капсулы, м	27,7
Коэффициент формы	0,6
Коэффициент сопротивления	0,35
Радиус цилиндра капсулы, м	16,62
Толщина стенки капсулы, м	> 0,91

При нахождении в диапазоне выбранных значений, можно достичь наибольшей производительности при значении энергозатрат, не превышающих 9,1 кВт*ч. при разработке месторождений ЖМК на глубинах свыше 3600 метров.

ЗАКЛЮЧЕНИЕ

Диссертация является научно-квалификационной работой, в которой изложены новые научно обоснованные технические решения и разработки по снижению энергоёмкости процесса подъёма глубоководных твердых полезных ископаемых (ЖМК) за счёт применения промежуточной капсулы с атмосферным воздухом и использованием гидравлической энергии водной среды.

Основные научные результаты и выводы:

- 1. На основе анализа существующих технологий добычи глубоководных ЖМК выявлены основные способы транспортирования конкреций на поверхность: цикличный, поточный, эрлифтный и двухстадийный.
- 2. Обоснована целесообразность применения двухстадийного способа подъёма ЖМК, при котором часть пути конкреции преодолевают до промежуточной капсулы без дополнительного силового оборудования, используя энергию гидростатического давления, а оставшаяся часть высоты преодолевается за счёт лебёдочно-тросовой системы, при этом энергозатраты на спускоподъемные операции снижаются не менее чем на 18% по сравнению с традиционными методами транспортирования.
- 3. Рациональными параметрами промежуточной капсулы для работы на глубине 3500 метров являются цилиндрическая форма с торцевыми полусферами с коэффициентом формы 0,6, длиной оси капсулы 27,7 метров и толщиной стенки более 0,91 м.
- 4. Экспериментально оценено влияние формы цилиндрической капсулы на ее гидродинамическое сопротивление и установлено, что при значении коэффициента формы капсулы около 0,6 достигается наименьшее значение коэффициента сопротивления, что позволяет снизить энергозатраты процесса транспортирования не менее чем на 9% по сравнению с капсулой с коэффициентом формы 0,9.
- 5. Результаты работ приняты и внедрены в ООО «ГИКО», в том числе приняты методики расчетов и получения экспериментальных данных для создания опытного образца подводного добычного комплекса.
- 6. Направлением дальнейшего развития темы исследований может стать изучение и моделирование процессов взаимодействия промежуточной капсулы с морской средой с учетом изменяющихся гидродинамических условий (влияние течений, турбулентности, температурного и солевого градиентов), а также проведение натурных испытаний и масштабирование технологии для промышленного использования.

Полученные в диссертационном исследовании результаты подтверждают возможность организации энергоэффективной добычи

глубоководных твердых полезных ископаемых с использованием промежуточной капсулы, работающей на принципах гидростатического давления. Предложенный технологический комплекс и экспериментально обоснованные способы снижения сопротивления при движении оборудования в морской воде расширяют перспективы освоения стратегически важных месторождений ЖМК в условиях больших глубин.

СПИСОК ОСНОВНЫХ РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Публикации в изданиях из Перечня ВАК:

- 1. Сержан, С.Л. Перспективы применения добычного комплекса с капсулой в условиях добычи шельфовых железомарганцевых конкреций Российской Федерации / Сержан С.Л., **Малеванный** Д.В. // Горное оборудование и электромеханика. 2022. № 4(162). С. 3–11. DOI: 10.26730/1816-4528-20224-3-11.
- 2. Сержан, С.Л. Технология глубоководной добычи твёрдых полезных ископаемых с применением промежуточной капсулы / Сержан С.Л., **Малеванный** Д.В. // Горное оборудование и электромеханика. -2023. -№ 2. -C. 49–56. -DOI: 10.26730/1816-4528-2023-2-49-56.

Публикации в изданиях, входящих в международную базу данных и систему цитирования Scopus:

- 3. Сержан С. Л. Исследование влияния шероховатости стальных и полимерных труб на потери напора при гидротранспорте хвостовой пульпы / С.Л. Сержан, В.И. Скребнев, Д.В. Малеванный // Обогащение руд. 2023. № 4. С. 41-49. DOI 10.17580/or.2023.04.08.
- 4. Сержан, С.Л. Современное состояние и перспективы развития технологий подъёма для комплексов добычи глубоководных твёрдых полезных ископаемых / Сержан С.Л., **Малеванный** Д.В. // Горный информационно-аналитический бюллетень. -2024. № 12-1. С. 107–128. DOI: $10.25018/0236_1493_2024_121_0_107$.

Патенты и свидетельства на объекты интеллектуальной собственности:

- 5. Патент № 2779867 С1 Российская Федерация, МПК Е21С 50/00. Промежуточная капсула для подъема твердых полезных ископаемых со дна мирового океана. Заявка № 2022109841: заявл. 13.04.2022: опубл. 14.09.2022 / С.Л. Сержан, С.А. Лавренко, Д.В. Малеванный, Л.М. Дадаян; заявитель/правообладатель федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет императрицы Екатерины II» 14 с.
- 6. Патент № 226407 U1 Российская Федерация, МПК Е21С 50/00. Подводный колокол для добычи шельфовых железомарганцевых конкреций. Заявка № 2024105239: заявл. 29.02.2024: опубл. 03.06.2024 / С.Л. Сержан, Д.В. Малеванный, Л.М. Дадаян; заявитель/правообладатель федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет императрицы Екатерины II» 11 с.
- 7. Свидетельство о государственной регистрации программы для ЭВМ № 2023611754 Российская Федерация. Программа для определения рациональных геометрических параметров погружной капсулы. Заявка № 2023610573: заявл. 18.01.2023: опубл. 24.01.2023 / С.Л. Сержан, Д.В. Малеванный; заявитель/правообладатель федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет императрицы Екатерины II» 1 с.

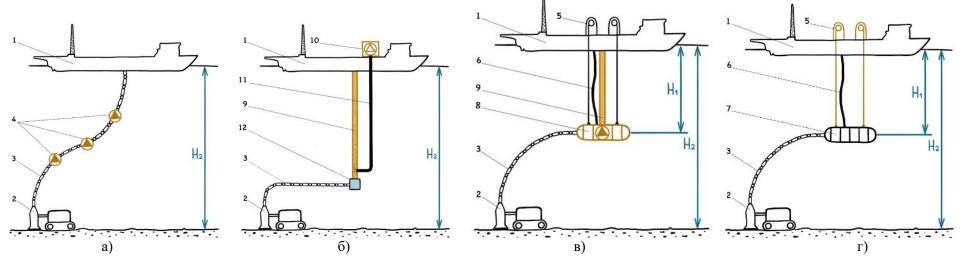


Рисунок 1 — Типовые схемы технологии поточного подъема твердых полезных ископаемых со дна: а) — насосная система гидроподъема; б) справа - эрлифтная система подъема; в) — циклично-поточная система; г) — двухстадийный подъем [составлено автором].

 H_1 – глубина погружения промежуточной капсулы; H_2 – глубина акватории в месте залегания ТПИ.

1 — морское судно; 2 — подводная горная машина с инструментом изъятия; 3 — трубопровод положительной плавучести; 4- насосные установки; 5 — судовые лебедки; 6 — гибкий воздуховод; 7 — промежуточная капсула с атмосферным давлением; 8 — промежуточная капсула с насосным оборудованием; 9 — вертикальный трубопровод; 10 — компрессорная установка; 11 — воздухопровод; 12 — коллектор.

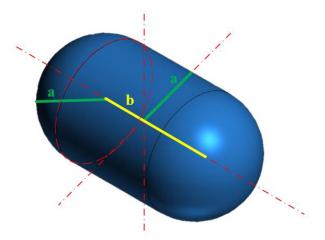


Рисунок 2 — Определение осей цилиндрической капсулы с торцевыми полуосями [составлено автором]

а – радиус цилиндра и торцевых полусфер; b – ось цилиндра.

Зависимость произвоидетельности от длины оси капсулы



Рисунок 3 — Зависимость производительности циклично-поточной технологии от длины оси капсулы [составлено автором]

Зависимость энергозатрат от длины оси капсулы

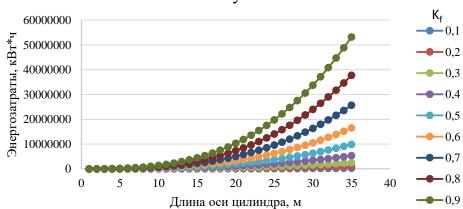


Рисунок 4 — Зависимость энергозатрат циклично-поточной технологии от длины оси капсулы [составлено автором]

Зависимость произвоидетельности от длины

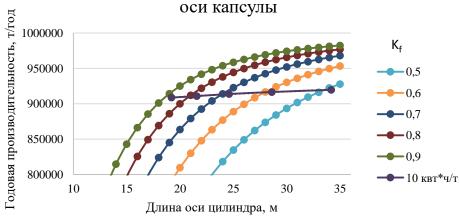


Рисунок 6 — Зависимость производительности циклично-поточной технологии от длины оси капсулы с ограничением в 10 кВт/т [составлено автором]

Энергоемкость циклично-поточной технологии от длины оси капсулы

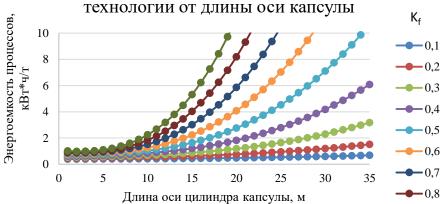


Рисунок 5 — Энергоемкость цикличино-поточной технологии, ограниченной энергозатратами в $10~\mathrm{kBt/t}$ [составлено автором]

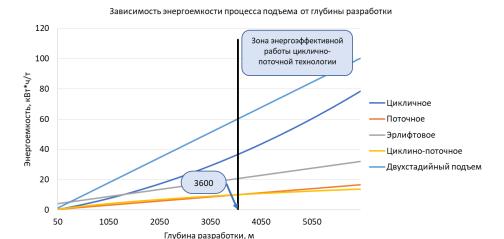


Рисунок 7 — Энергоемкость глубоководной добычи твердых полезных ископаемых [составлено автором]

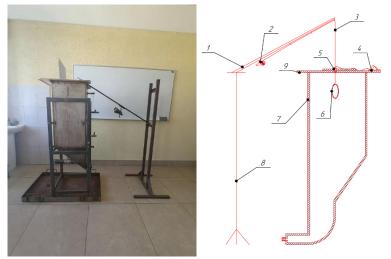


Рисунок 8 — Фото и схема испытательного стенда [составлено автором] 1 — удилище, 2 — катушка, 3 — нить нерастягивающаяся, 4 — блок электроники Arduino, 5 — щелевой датчик, 6 — исследуемый образец, 7 — корпус высотой в 1000 мм, 8 — штатив, 9 — крышка корпуса

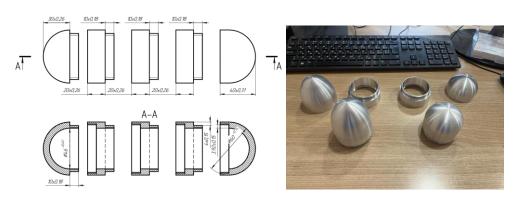


Рисунок 9 – Схема и фотография модели промежуточной капсулы [составлено автором]

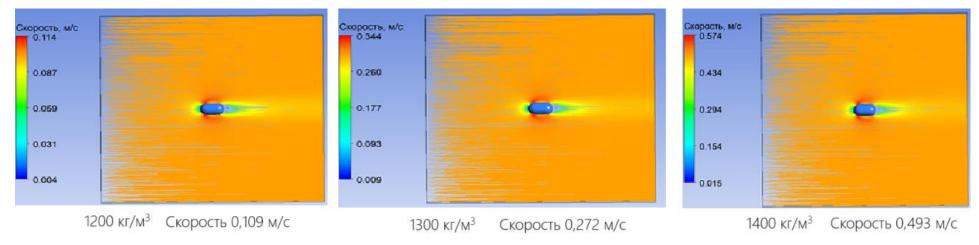


Рисунок 10 – Поле скоростей в окрестности капсулы по данным компьютерного моделирования [составлено автором]

Рисунок 11 — Расчет коэффициента лобового сопротивления, при различных формах капсулы. Скорость 0,5 м/с [составлено автором]

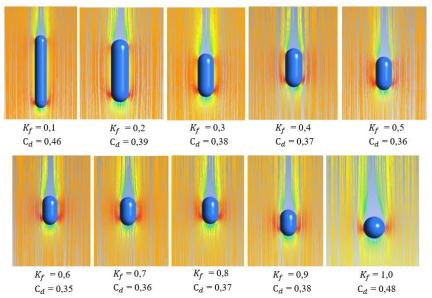


Рисунок 13 — Моделирование процесса погружения эллиптической капсулы при разных скоростях погружения [составлено автором]

Результат моделирования процесса погружения

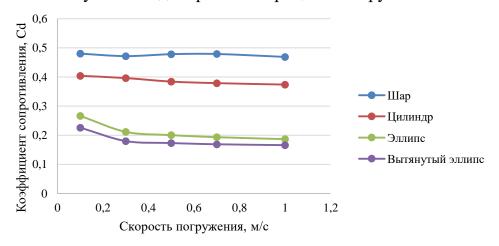


Рисунок 12 – Графики зависимости коэффициента сопротивления от скорости погружения промежуточной капсулы при её разных геометрических формах [составлено автором]

Зависимость Cd от Kf цилиндрической промежуточной капсулы



Рисунок 14 — Зависимость коэффициента сопротивления от коэффициента формы цилиндрической промежуточной капсулы [составлено автором]